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Three experiments examined transfer between two isomorphic subdomains of algebra and
physics. The two areas were arithmetic-progression problems in algebra and constant-acceleration
problems in physics. High school and college students who had learned one of these subtopics
were presented with word problems that used either content from the domain they had originally
studied or content based on the unfamiliar but analogous domain. Students who had learned
arithmetic progressions were very likely to spontaneously recognize that physics problems
involving velocity and distance can be addressed using the same equations. Analysis of problem-
solving protocols revealed that the recognition was immediate and that the solutions were a
straightforward application of the algebraic method. Such recognition occurred even when the
algebraic procedures were taught using example word problems all of which were drawn from a
single content area (e.g., "money" problems). In contrast, students who had learned the physics
topic almost never exhibited any detectable transfer to the isomorphic algebra problems. In the
only case of transfer from physics to algebra, the process was analogical in nature. In addition,
transfer from algebra to physics word problems was impaired if the physics transfer problems
were embedded in a discussion of motion concepts. The results were interpreted in terms of
content-free versus content-specific applicability conditions for mathematical procedures.

One of the most persistent results in studies of human
problem solving is that experience with particular problems
often yields little or no transfer to similar problems. This
negative conclusion emerges from studies of transfer between
isomorphs of the "Tower of Hanoi" problem (Hayes & Simon,
1977), between homomorphs of the "missionaries and can-
nibals" problem (Reed, Ernst, & Banerji, 1974), and between
slightly transformed versions of algebra problems (Reed,
Dempster, & Ettinger, 1985). On the surface, the generally
dismal experimental findings regarding transfer in problem
solving would seem to undermine the most fundamental goals
that guide education. Except for the simplest forms of rote
learning, effective instruction is intended to impart knowledge
that can be applied to situations other than those that were
directly taught. Indeed, because it is often impossible to
foresee precisely the situations in which particular knowledge
will prove potentially useful for the student, educators are
often concerned to teach in such a manner that transfer to
novel problem situations will be possible.
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Determinants of Transfer

The major requirement for ensuring successful transfer is
to foster the problem solver's access to relevant prior knowl-
edge. Teachers do, of course, often directly instruct students
that certain domains are related, thus eliminating the problem
of spontaneous access. For example, Gentner and Gentner
(1983) found that the analogy between electric circuits and
water flow, which is often directly used in instruction, system-
atically influenced subjects' solutions of electricity problems.
In some studies (Reed et al., 1974; Gick & Holyoak, 1980,
1983), an explicit hint to use an initial problem as a guide to
help solve an analogous problem from a different domain
increased the level of transfer. Without such external prompts,
prior knowledge often remains "inert" (Whitehead, 1929).

Access to knowledge will be highly dependent on the way
in which it is organized in memory. In particular, if we accept
the notion that problem-solving knowledge is typically en-
coded along with its conditions of applicability (Anderson,
1983; Bransford, Sherwood, Vye, & Rieser, 1986; Cheng,
Holyoak, Nisbett, & Oliver, 1986; Simon, 1980), it follows
that access to knowledge will depend on the relation between
the encoded conditions of applicability and the retrieval cues
afforded by the transfer task. It is useful to distinguish three
general classes of information that may be used to define
conditions of applicability: surface content, underlying struc-
ture, and context.

Content cues include salient features of the specific domain
from which examples are drawn, whereas structural cues are
less salient features, often relational in nature, that directly
relate to the conditions under which particular solution meth-
ods are in fact appropriate. Holyoak and Koh (1987) found
that both content and structural cues affect access to earlier
examples of problems. Content cues are very likely to trigger
reminding (Ross, 1984, 1987); however, to the extent that
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content cues are not perfectly correlated with underlying
structural features, reliance on the former may lead to negative
transfer across problems that are only superficially similar
and to failure to access related knowledge across different
content domains. Gick and Holyoak (1983; also Brown,
Kane, & Echols, 1986) found that exposure to multiple ex-
amples with differing contents helped subjects to focus on
shared structural features, which in turn facilitated transfer.

Contextual cues derive from the situation in which the
initial information is encoded; if the context of the transfer
task differs substantially, transfer will be impaired (Spencer &
Weisberg, 1986). It is important to note that context is not
limited to the physical components of the situation. The
psychological context, such as the set of expectations people
have about the problem-solving task in which they are en-
gaged, will influence access to knowledge. Schoenfeld (1985),
analyzing the components of mathematical knowledge and
behavior, referred to such psychological expectations as "belief
systems." He found that students could be quite capable of
using deductive argumentation while solving geometry "proof
problems," yet fail to invoke their deductive knowledge when
solving "construction problems," for which they believed the
appropriate approach was trial and error. In such a broad
sense, context may have a major influence on the choice of
content and structural cues for inclusion in applicability con-
ditions.

It is often the case that contextual, content, and structural
features are naturally confounded in everyday problem solv-
ing. In the case of physics, for example, the structural features
crucial to the applicability of physical laws are correlated with
specific physical concepts and are learned within the school
context of studying physics. As a result, physics knowledge is
often learned in a manner that allows it to be applied to
textbook situations, but not to everyday physical phenomena
encountered outside of the school context (see, e,g.T Cara-
mazza, McCloskey, & Green, 1981; di Sessa, 1982; Mc-
Closkey, 1983).

There are some topics, however, in which the three types
of cues are not correlated to the same degree. Mathematics
and logic, for example, are conceived as tools that are essen-
tially content free and independent of any particular domain
of application. To the extent that students in fact acquire
domain-independent representations of formal procedures,
coupled with suitably abstract conditions of applicability, such
knowledge might be applied appropriately to novel content
areas.

There is relatively little empirical evidence concerning
transfer of formal problem-solving procedures. Cheng et al.
(1986) found that purely formal training in propositional logic
had little impact on subjects' ability to solve inference prob-
lems of an unfamiliar type. However, if logic training was
coupled with a small number of example problems, subjects
were in fact able to apply the logical procedures to isomorphic
problems with different content. Fong, Krantz, and Nisbett
(1986) found that instruction in basic statistical principles
yielded transfer to problems with different surface features.

In the case of mathematics, Reed et al. (1985) found that
novice students of algebra were unable to solve even a slightly
transformed version of an example problem. Their negative

findings may, however, be limited to students with minimal
initial learning. Within the domain of mathematics, as well
as within the domain of physics, there is considerable evidence
that people do learn fairly abstract categories of problem
situations, which might be expected to facilitate transfer. Chi,
Feltovich, and Glaser (1981) examined the ways in which
novices and experts categorized physics problems. Although
experts categorized problems more abstractly than did nov-
ices, and in ways more conducive to finding efficient solu-
tions, even novices were able to recognize that a fairly broad
range of problems shared the same schematic structure (also
see Larkin, McDermott, Simon, & Simon, 1980). Other stud-
ies have shown that students are able to reliably categorize
different types of algebra word problems they have encoun-
tered in the school curriculum (Hinsley, Hayes, & Simon,
1977; Mayer, 1981). The mode of text comprehension and
problem solving for algebra word problems proposed by
Kintsch and Greeno (1985) assumes that problem solvers
engage in an understanding process that depends on retrieval
of problem schemas. To some extent at least, students appear
to have learned how to translate problems with a variety of
"cover stories" into formulas appropriate to the underlying
relational structure. These studies of problem categorization
did not, however, provide any direct evidence linking the
ability to classify problems within each domain to successful
transfer.

Isomorphic Subtopics of Algebra and Physics

Our goal in the present study was to investigate problem-
solving transfer based on the ability to apply mathematical
procedures to simple word problems in algebra and physics.
The study centered on two specific subtopics of the high
school algebra and physics curriculum, namely, arithmetic-
progression word problems (algebra), and problems involving
motion in a straight line with constant acceleration (physics).
These two domains have several advantages for a study of
transfer. Each has a rigorous formal structure, and each
affords a wide range of examples dealing with a variety of
everyday content domains. In addition, dealing with problems
from a typical high school curriculum has the benefit of
possible direct implications for the educational system with
regard to optimal structuring of the school curriculum.

Most important, the word problems within these two do-
mains, although referring to very different contents, are struc-
turally isomorphic. In general terms, an arithmetic-progres-
sion problem involves an expanding numerical sequence that
begins from some initial term and increases in increments of
a constant magnitude (the common difference) up to some
final term. The basic questions that can be asked about an
arithmetic progression are the following: (a) How many terms
are there? (b) What is the value of thtjirst term? (c) What is
the value of the final term? (d) What is the common difference?
(e) What is the total sum of these terms?

The italicized words refer to the major abstract categories
involved in defining a schema for arithmetic-progression
problems. Students are typically taught these terms, as well as
equations sufficient to solve the kinds of problems that result
from the above questions.
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The content of the isomorphic physics problems refers to
moving objects that increase in velocity at a constant rate
while moving in a straight line. Typical types of questions,
corresponding to the algebra questions presented above, are
the following: (a) How many seconds did the body travel? (b)
What was the velocity at the beginning of the first second! (c)
What was the velocity at the end of the final second? (d) What
is the constant acceleration? (e) What was the total distance
traveled?

The isomorphism depends on mapping initial velocity onto
the initial term in a sequence, discrete units of time onto the
number of terms in the sequence, constant acceleration onto
the common difference, and final velocity onto the final term.
Total distance maps onto the sum of a different arithmetic
sequence, in which each term is the distance traveled in the
corresponding unit of time.

Each of these topics is commonly taught in Grade 11, but
in different classes. Furthermore, despite the isomorphism
that exists between the two types of problems, neither teachers
nor textbooks typically mention that the topics are related,
although some algebra textbooks may include one or two
word problems referring to motion. Our analysis of content
specificity of representations, however, allows us to make
predictions about the degree of transfer we would expect
between each topic and the other.

In the case of arithmetic progressions, the equations and
associated terminology for variable assignment are very ab-
stract and are intentionally taught so as to fit a wide range of
contents given a certain set of necessary conditions. The
relations between the various variables are illustrated ab-
stractly by exercising with problems without any specific
content, and the variables in the relevant equations are non-
mnemonic. The surface features illustrated in typical word
problems vary widely and include such differing contents as
whether the story deals with deposits to a saving account, with
lengths of metal rods, or with the number of seats in an
auditorium. The problems also include other semantic ele-
ments that students learn are generally irrelevant to the solu-
tions of algebra word problems (Kintsch & Greeno, 1985). A
simple rule for deciding that the equations might be applicable
would be "If a word problem is presented, and it mentions a
constantly increasing quantity, then try the arithmetic-pro-
gression equations." Such a content-free rule would allow
even a novice to apply the equations to word problems with
novel content. Accordingly, we predicted that procedures for
solving the algebra problems should be applicable to physics
problems, even if the content of the latter is completely
unfamiliar, resulting in a high level of transfer. Since constant-
acceleration problems are in fact a special case of arithmetic
progressions, transfer from algebra to physics can be viewed
as a case of categorizing novel instances (constant-acceleration
problems) as members of a known category (arithmetic-pro-
gression problems).

In contrast, studying physics would be expected to result in
representations that are bound to the physics content. The
formulas are taught as a means of solving a very distinct and
specific group of problems, those dealing with a body moving
in a straight line with constant acceleration. The variables in
equations are given mnemonic names related to physical

concepts, such as "acceleration." The critical structural rela-
tions, which students are taught to check, involve a moving
body that travels in a straight line, the speed of which increases
or decreases by a constant amount every successive unit of
time over some time interval. A simple rule for identifying
word problems of this type would be "If a physics word
problem is presented, and it involves time, and speed or
distance, and constant acceleration, then try the constant-
acceleration equations." The resulting representation is cer-
tainly abstract to a degree, in that the student learns to ignore
various kinds of surface information, such as the nature of
the moving body (a car, train, ball, etc.) and such details as
the purpose of the trip. Nonetheless, it is clear that the physics
representation will be more content bound than the corre-
sponding algebra representation.

One illustration of the difference in content specificity is
the fact that the parameters in arithmetic progressions have
no units, and the number of terms is a pure count, whereas
the parameters of constant-acceleration equations have spe-
cific units that bind the meaning of their products. For
example, multiplying acceleration (m/s2) by time (s) results
in velocity (m/s), and multiplying velocity (m/s) by time (s)
results in distance (m). Thus, whereas the representation for
arithmetic-progression problems is very abstract and applica-
ble to virtually any content, the representation for constant-
acceleration problems is bound to specific content, units, and
concepts. Accordingly, we predicted a low level of transfer
from physics to algebra, because transfer in this direction
would require a relatively demanding analogical "remind-
and-map" process (Holyoak, 1985; Holyoak & Thagard, in
press) to relate a relatively domain-specific representation (for
constant-acceleration problems) to analogous problems in
other content domains.

Bassok and Holyoak (1985) performed an initial pilot test
of these predictions in a study conducted within a natural
school setting. The study involved 1 lth-grade high school
subjects from an algebra class who had studied arithmetic-
progression problems but not constant-acceleration problems
and 1 lth-grade high school subjects from a physics class for
whom the reverse was true. A striking asymmetry was ob-
served in transfer performance. Students who had learned the
arithmetic-progression method applied it equally often (72%
of the time) to new algebra problems (with content similar to
that of the problems used in training) and to novel physics-
content problems. In contrast, students who had learned the
constant-acceleration method applied it to all of the physics
transfer problems but to none of the algebra transfer problems.
This initial study thus strongly supported our predictions
regarding the impact of differential content specificity on
transfer of mathematical procedures. However, given the
methodological limitations of conducting studies in the school
setting, a more rigorous replication seemed desirable.

The present study had several aims. Experiment 1 was
designed to demonstrate that interdomain transfer of mathe-
matical procedures is indeed possible under the optimal con-
ditions of algebra training. In addition, we sought to confirm
that transfer is indeed asymmetrical, in that the domain
specificity of physics instruction would make transfer to non-
physics problems very difficult. We also wished to test alter-
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native hypotheses regarding the necessary conditions for
transfer of algebraic knowledge. Experiment 2 investigated
transfer when the range of training examples was restricted,
and Experiment 3 explored the effects of content specificity
of the context during the transfer task.

Experiment 1

Experiment 1 was essentially a replication of the initial
experiment by Bassok and Holyoak (1985), except that the
students were instructed individually, gave "talk aloud" pro-
tocols while solving both the base domain and the target
problems, and solved a set of pretest problems structurally
matched to the final set of problems. The individual instruc-
tion enabled us to control the exact content and presentation
of the material to be learned, and the verbal protocols pro-
vided us with much more detailed information about the
solution process. The solutions of the pretest problems pro-
vided a baseline for comparison between the methods applied
before and after studying the base domain subject matter.

Method

Subjects. Subjects were 12 ninth-grade high-ability students from
an accelerated scientific program in a public high school in Pittsburgh.

They had not yet studied either the topic of arithmetic progressions
or the topic of motion in a straight line with constant acceleration.
There were 5 male and 7 female subjects. Subjects were paid for
participating in the study.

Materials, Two sets of algebra problems and two sets of physics
problems were constructed. One set of arithmetic-progression prob-
lems and one set of constant-acceleration problems served as pretests
for the algebra and the physics groups, respectively. The other two
sets served as transfer test and posttest for each of the groups. The
algebra and physics problems were matched in pairs with respect to
the underlying structure of the problem. The first two problems in
each set were of the arithmetic-sequence type, and the third was an
arithmetic-series problem. Each pair could be solved using a corre-
sponding formula and was matched with respect to which variables
were given and unknown. Examples of the word problems used are
presented in Table 1.

Two shortened and somewhat revised versions of standard texts
used currently in high school were used to teach the relevant physics
and algebra subject matter (the original texts are by Murphy, Hollon,
& Zitzewitz, 1982, [pp. 39-47] and Dolciani, Wooton, Beckenbach,
& Sharon, 1983 [pp. 213-255]). The revised version of the algebra
chapter omitted the section dealing with the 2, and presented only a
subset of the original practice problems. The revised version of the
physics chapter excluded all references to changing units (for example,
changing from meters per seconds into feet per minutes), vectors,
velocity as distinct from speed, and references to other chapters.

Table 1
Matched Arithmetic-Progression (Algebra) and Constant-Acceleration (Physics) Test Problems: A Representative Set

Algebra Physics
Sequence type
Given: a,, d, n, find an

1. A boy was given an allowance of 50 cents
a week beginning on his sixth birthday. On
each birthday following this, the weekly al-
lowance was increased 25 cents. What is the
weekly allowance for the year beginning on
his 15th birthday?

Given: aw an, n, find d
2. During a laboratory observation period it
is found that the diameter of a tree increases
the same amount each month. If the diame-
ter was 8 mm at the beginning of the first
month, and 56 mm at the end of the 24th
month, by how much does the diameter in-
crease each month?

Series type
Given: alt an, n, find S,,
3. A mechanic has to cut 9 different length
metal rods. The shortest rod has to be 6 ft.
long and the longest rod has to be 10ft.
long, and each rod has to be longer than the
one before by a constant amount. What is
the total length of metal required to prepare
these rods?
Given: a,, d,, n, find Sn

4. Kate O'Hara has a job that pays $7,500
for the first six months, with a raise of $250
at the end of every six months thereafter.
What was her total income after 12 years?

1. An express train traveling at 30 me-
ters per second (30 m/s) at the begin-
ning of the 3rd second of its travel, uni-
formly accelerates increasing in speed 5
m/s each successive second. What is its
final speed at the end of the 9th second?

2. What is the acceleration (= increase
in speed each second) of a racing car if
its speed increased uniformly from 44
meters per second (44 m/s) at the begin-
ning of the first second, to 55 m/s at the
end of the 1 lth second?

3. A jumbo jet starts from rest and ac-
celerates uniformly during 8 seconds for
takeoff. If it travels 25 meters during the
first second and 375 meters during the
8th second, what distance does it travel
inaU?

4. An object dropped from a hovering
helicopter falls 4.9 meters during the
first second of its descent, and during
each subsequent second it falls 9.8 me-
ters farther than it fell during the pre-
ceding second. If it took the object 10
seconds to reach the ground, how high
above the ground was the helicopter
hovering?



INTERDOMAIN TRANSFER 157

Procedure. AH subjects were recruited for a study described as
directed at the development of new instructional materials for high
school mathematics and science curricula. All students expected to
study both an algebra and a physics chapter. Subjects were randomly
assigned to two experimental conditions according to the base domain
they had to study. Six subjects were assigned to the physics group.
These subjects studied the physics chapter and later were tested on
arithmetic-progression problems. The other 6 subjects, the algebra
group, studied the algebra chapter and were subsequently tested on
constant-acceleration problems.

The experiment was conducted in two experimental sessions. The
first "pretest and study" session lasted 1.5-3 hr, and the second
"transfer" session lasted between 30-60 min. For each subject, the
two sessions were conducted on two consecutive days.

During the first session, subjects solved a set of three pretest
problems from the chapter they were about to study, giving "talk
aloud" protocols. The physics subjects solved three constant-acceler-
ation problems, whereas the algebra subjects solved three arithmetic-
progression problems. The pretest problems for the two groups, like
the later test problems, differed only with respect to their content and
were matched in pairs with respect to their underlying structure.

After finishing the pretest, subjects were given a chapter covering
all the necessary information for the base domain. Students studied
at their own pace with minimal intervention from the experimenter,
solving some practice problems as they progressed. When they felt
that they had mastered the chapter, they were given a test covering
the various topics presented in the text. Their test was corrected, and
any mistakes were pointed out to the subject, who was asked to reread
the chapter until correctly solving all of the test problems. This
procedure of learning until criterion was used to increase the proba-
bility that all of the subjects would adequately master the methods
for solving problems from the base domain.

During the second session, conducted on the following day, sub-
jects were first told they would be learning about a new domain. They
were then asked to solve three transfer problems (i.e., problems from
the domain that they had not studied). These problems were presented
as a pretest to the new chapter they were about to study. In none of
the experiments to be reported were subjects informed about the
relationship between their training and the transfer test. After finish-
ing the transfer test, subjects were asked to solve the three parallel
problems from the studied base domain. Subjects were then informed
that they would not in fact study another chapter and were thoroughly
debriefed. The entire session was tape-recorded for later analysis.

Results and Discussion

Quantitative analyses. Our main concern was to deter-
mine whether subjects were able to recognize that the unfa-
miliar constant-acceleration problems were amenable to the
same type of solution as were the familiar arithmetic-progres-
sion problems, because of their shared underlying structure.
Accordingly, the primary measure of transfer involved an
assessment of the solution method applied to the problems,
rather than the final correct answers. We categorized the
solution methods exhibited in subjects' written work into two
main categories, the "learned" method and "other" methods.
A solution attempt was classified as using the learned arith-
metic-progression method if the solution included explicit
arithmetic-sequences or arithmetic-series formulas (an = #i +
sion notation as taught in the class (als an> n, d, Sn). It was
classified as using the learned constant-acceleration method
if the solution included explicit constant-acceleration formu-
acceleration notation as taught in the class (v,, vf, t, a, S).

The "other* methods included two subcategories. (a) In the
means-ends method, the solution attempt included solutions
of subproblems and involved application of general algebraic
equations for the solution of the subproblems (e.g., multiply-
ing the number of required additions by the size of the
common difference and then adding the resulting value to
the first term). This method captures the rationale behind the
basic formula for arithmetic sequences, but it uses more steps
and does not explicitly use the specific notation, (b) In the
one-by-one method, the solution attempt consisted of sequen-
tial additions iterated until the requested amount was reached,
often after a trial and error search for the magnitude of the
common difference. Such a method becomes very cumber-
some and time consuming as the number of terms in the
sequence or series increases. Because no interesting patterns
emerged from the analysis of subtypes of "other" methods,
only the frequencies of arithmetic-progression solutions are
reported here.

Table 2 summarizes the various quantitative performance
measures for subjects from both experimental conditions on
the three parallel sets of pretest, posttest, and transfer prob-
lems. The left column presents the results concerning the
solution method, the middle column presents the average
number of correct solutions, and the right column presents
the solution time.

The main dependent measure of transfer in the present
study was whether the learned method had been applied to
structurally isomorphic but unfamiliar problems. Because
none of the subjects were initially familiar with either the
physics equations or with the specific algebraic equations, the
methods that were applied for the solution of all of the pretest
problems came from general algebraic knowledge available to
the subjects. After studying the relevant chapter, all the algebra
students applied the learned arithmetic-progression method
to the posttest algebra problems, and they applied the method
to 17 out of the 18 available problems. Similarly, all the
physics students applied the learned constant-acceleration
method to the posttest physics problems, and they applied the
method to 16 out of the 18 available problems. Thus both
groups acquired and used the learned method for the familiar
base-domain problems. The two training groups behaved very
differently, however, with respect to transfer. Whereas all

Table 2
Performance Measures for Algebra and Physics Problems
Under Algebra Training and Under Physics Training in
Experiment 1

Training type
Algebra training {N = 6)

Pretest (algebra)
Posttest (algebra)
Transfer (physics)

Physics training (N = 6)
Pretest (physics)
Posttest (physics)
Transfer (algebra)

% application
of learned

method

0
94
72

0
89
10

% correct
answers

72
100
94

83
100
94

Solution time
per problem

(minutes)

2.35
1.45
1.31

3.48
1.88
2.37

Note. Percentages are based on the average number of problems per
subject, out of a total of three problems.
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algebra students applied the learned method to the solution
of the physics problems (13 out of 18 problems), only one
physics student used the learned method for the unfamiliar
algebra problems (2 out of 18 problems).

With respect to solution method, the results were thus
straightforward. Whereas there was very high transfer from
algebra to physics (72%), there was almost no transfer from
physics to algebra (10%). This difference is of course highly
significant, F(\, 10) = 25.3, p < .001, MSe = .53, for the
interaction between the training and the content of problems.

The number of correct solutions served only as an indirect
measure of transfer, because all the problems could have been
solved correctly even when solved by means of a different,
more cumbersome method. Answers were scored as correct
either when the answer was entirely correct or when the error
resulted from a calculation slip (including miscalculation of
the number of terms in the sequences). Indeed, although the
physics subjects did not apply the learned method to the
unfamiliar algebra problems, they correctly solved all of the
transfer problems, performing as well on these problems as
did the algebra subjects. Thus with respect to the number of
correct solutions, both groups improved in comparison to
their performance on the pretest, F({, 10) = 6.45, p < .01,
MSC = .21, with no significant interaction between training
and test condition. This result suggests that some learning
may have occurred in the physics group that was relevant to
the solution of the algebra problems. However, improvement
was not due to a qualitative change in solution methods. In
fact, transfer problems that were not solved by the learned
method were solved by the same methods applied to the
matching pretest problems, either means-ends or the one-by-
one iterative method. The improvement thus reflects the effect
of practicing general algebraic methods that the physics sub-
jects knew prior to the experiment.

Analysis of the solution time for the various problems
provides additional evidence for an asymmetry between the
algebra and the physics training groups. These times were
calculated from the tape-recorded protocols, adjusted by sub-
tracting time devoted to explicit mathematical calculations.
(The pattern of solution times was the same when unadjusted
times were considered.) Although both groups required more
time to solve the pretest problems than either the base-domain
posttest problems or the transfer problems, F(\, 20) = 11.3.
p < .001, M5"e (in seconds) = 14,637, the physics subjects
required more time to solve the algebraic-progression prob-
lems than the algebra subjects required to solve the physics
problems. This effect of training condition was qualified by
significant interactions between test and problem type (se-
quence vs. series), F(2, 20) — 9.11, p < .001, and between
training condition, the test and the problem type, F(2, 20) —
6.00, p < .01, M5; = 2,509 for both interactions. A more
detailed analysis of the solution-time differences revealed that
the effect of training condition was entirely due to relatively
slow solution of the algebraic-series problem by the physics
subjects, who typically applied the cumbersome iterative
method (average of 3.89 min/problem). In contrast, the al-
gebra subjects required an average of only 2.07 min to solve
the corresponding series problem in physics using the efficient
arithmetic-series formula, /(20) = 3.77, p < .001. The two

groups did not differ in solution time for the sequence prob-
lems (1.61 and 1.23 min/problem for physics and algebra
training, respectively), f(20) < 1. (Note that the mean solution
times reported in Table 2 are based on a weighted average of
the means for the one series problem and the two sequence
problems.) Whereas the equation for algebraic series provides
a qualitatively different and more efficient solution procedure
(calculating the value of the average term and multiplying it
by the number of terms), the equation for algebraic sequences
is essentially an explicit formulation of the means-ends
method that most of the subjects used spontaneously, and
hence its use does not produce shorter solution times.

Protocol results. In order to examine the basis of the
observed asymmetry in transfer in more detail, the verbal
problem-solving protocols of subjects in both the algebra and
the physics groups were analyzed. We were particularly inter-
ested in identifying the initial signs of recognition that the
transfer problems were similar to those of the type used in
training.

Table 3 presents three respective excerpts from the proto-
cols of algebra-trained subjects solving physics problems on
the transfer test. These subjects referred to the physics prob-
lems as a simple new case of the familiar arithmetic-progres-
sion problems. They proceeded by retrieving the relevant
equation, identifying the relevant variables, and inserting the
values into the equation. The most striking feature of the
transfer protocols for all the algebra students is the absence of
any indication that the subjects are dealing with unfamiliar
problems. The verbal reports are entirely consistent with our
hypothesis that algebra training results in the formation of
generalized rules describing applicability conditions, with ab-
stract variables that can be readily matched by the compo-
nents of physics problems with the same structure. Transfer
is simply the result of applying information about a known
category to a new instance.

Table 3
Examples of Protocols in Experiment 1: Transfer From
Algebra to Physics

Algebra subject I, solving physics problem 1
I'm recalling the arithmetic progression
labeling the third second «f, the fourth second ai...
The equation was a» = at + (n ~ l)d
and d equals 5
now n equals 7
a7 is what we want to find out
is equal to a, which is 30, plus (n — 1) which is 6,
times d which is 5, which is equal to 60.

Algebra subject 2, solving physics problem 1
8 increases
9 - l (n - l )
times the common difference, which is 5 m/s
and that should be equal to the final speed.

Algebra subject 6, solving physics problem 3
All right
a, equals 25, an equals 375,
and d equals the acceleration.
and now I have to do Sn — (a, + an) n/2.

Note. The problems appear in Table 1.
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The protocols provided much less information about the
mechanism of transfer from physics to algebra, considering
that only one subject noticed the relevance of the physics
equations to two of the three arithmetic-progression problems
that she received. Nonetheless, her protocols, the crucial
portions of which are excerpted in Table 4, are quite revealing.
It is readily apparent that the recognition of similarity pro-
ceeds in a much more laborious fashion than in algebra-to-
physics transfer. The protocols illustrate the indirect remind-
and-map process of transfer incorporated in the computa-
tional model of analogical problem solving proposed by
Holyoak and Thagard (in press).

The subject's first noticing of the analogy came in the
second of the three transfer problems, which involved a
sequence of diameters of a growing tree (Table 4). The first
clue that seems to have triggered the reminding was based on
the similarity between constant increase in the diameter of a
tree and constant acceleration, both of which involve a con-
stant rate of change over time. Once she had been reminded
of the physics equation, the subject tried to map the remaining
variables into the relevant slots, mapping initial diameter onto
initial velocity, final diameter onto final velocity, and the
number of months onto the time slot. The analogical nature
of the hypothesized correspondences is suggested by such
statements as "the beginning [diameter]... it's like the begin-
ning speed." It is apparent in the subsequent portion of the

Table 4
Examples of Protocols in Experiment 1: Transfer From
Physics to Algebra

Physics subject 1, solving algebra problem 2

Umm . . . well. . . I know there is a certain connection.
It's something like acceleration ...
I mean it's really similar, because there is time and . . .

Maybe we can use a formula for acceleration, because
you have the beginning . . . it's like the beginning speed,
the final speed, and the time.

The 8 mm as the beginning speed
and the 56 mm as the end speed
and the 24 is umm . . . time.

Because it has the same kind of variables.

But maybe it isn't, we don't have a proof that it is.
Fit just try using that formula, maybe it will work.

It's like . . . for acceleration.
Cause we want to know what the acceleration is
Because they're asking us how much it grew each month.

Physics subject 1, solving algebra problem 3

So, what we have to find again is the difference between each rod,
because they say it's a constant amount of difference.

Umm the difference between each rod . . . and it's constant.
OK, and that's again like the acceleration.

Because you have the first amount
and you have a final amount
and you have something like the time.

Note. The problems appear in Table I.

protocol that the analogy was very tentative; however, she
proceeded to work out the suggested solution, which was in
fact correct.

Table 4 also presents excerpts of the same subject's protocol
as she solved the third problem, which involved finding the
sum of the lengths of a series of rods. Once again the semantic
link between a constant increase and acceleration provided
the first reminding cue, again followed by an explicit devel-
opment of the mapping. However, one important difference
between this protocol and that for her first use of the analogy
concerns the degree of abstraction of the terms she used to
refer to variables. For example, whereas in the first protocol
she referred to the initial diameter as being "the beginning
speed," directly indicating the analogy, in the second protocol
she referred to the initial length as "the first amount," a more
generalized and domain-independent concept. This suggests
that in the process of working out the analogy the first time,
the subject induced more abstract concepts that begin to
approximate the representation for arithmetic progressions
that algebra-trained subjects were taught directly. The theo-
retical implication is that the indirect remind-and-map proc-
ess can provide the opportunity for induction of relatively
abstract, domain-independent applicability rules, which sub-
sequently allow more direct transfer.

The rest of the physics subjects never even mentioned the
possibility that the previously learned physics material might
be relevant to the new algebra problems. In the absence of
any surface similarities, analogical reminding is a relatively
rare event.'

Experiment 2

The results of Experiment 1 confirmed the findings of
Bassok and Holyoak (1985), indicating that instruction in
algebraic problem-solving procedures produces strong transfer
to structurally parallel physics problems with novel content.
As argued earlier in this article, there are a number of factors
that would be expected to make representations of algebraic
knowledge relatively independent of content cues. Experi-
ment 2 was designed to provide more detailed evidence re-
garding the importance of one of the most salient of these
factors: the diversity of the examples used in training. In
Experiment 1, as well as in the earlier classroom study per-
formed by Bassok and Holyoak (1985), arithmetic progres-
sions were illustrated using word problems drawn from several
distinct content areas (e.g., growth of savings accounts, height
of a human pyramid). If students formed generalized rules for
applicability conditions by an intersection process (Hayes-
Roth & McDermott, 1978; Winston, 1975), diversity of ex-
amples might be crucial to successful transfer.

It is possible, however, that interdomain transfer of alge-
braic procedures might be achieved even without diverse
examples. After years of extensive training in solving word

1 One other physics student, in a study not reported here, showed
transfer to a single algebra problem. Her protocol also provided clear
evidence of the relatively laborious task of developing an analogical
mapping.
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problems, starting with simple arithmetic problems (e.g., "Joe
has 2 marbles and Mary gave him 3 more"), it is possible that
algebra students will already have learned that the specific
content is typically irrelevant to the applicability of equations
and hence will not include content-specific details as appli-
cability conditions. This would be an example of the kind of
"belief system" that Schoenfeld (1985) suggested is important
in guiding the application of mathematical knowledge.

In Experiment 2 we examined whether instruction in arith-
metic progressions would transfer to word problems in a novel
domain even if the initial training involved examples with
only a single content (e.g., money problems). In addition,
Experiment 2 provided a test of whether the lack of transfer
from physics to algebra, observed in Experiment 1, could be
attributed to some intrinsic difficulty in learning from exam-
ples of motion problems. One of the groups in Experiment 2
received instruction in arithmetic progressions coupled with
constant-acceleration problems as the sole examples. If there
is some intrinsic difficulty in learning from examples of
motion problems, this group would show reduced transfer.
On the other hand, if the lack of transfer from physics in
Experiment 1 was due to the content specificity of the physics
equations, rather than to the intrinsic difficulty of learning
from motion problems, then such problems would produce
as much transfer as any other content domain when used to
illustrate algebraic equations.

Methods

Subjects. Subjects were 22 undergraduate college students, 10
men and 12 women. All students attended an Algebra II class at the
University of Pittsburgh that was offered to students who did not pass
the university's algebra placement test. The subject population was
thus considerably older than the ninth-grade subject population used
in Experiment 1, but less talented in mathematics. The experiment
was conducted during the regular lecture and recitations as a part of
the Algebra II course. A total of 89 students were in the course, but
only 22 were present for all four experimental sessions. None of the
students was familiar with either the topic of arithmetic progressions
or with the topic of accelerated motion.

Materials. All subjects received the same materials for instruction
in algebra as were used in Experiment 1, except that the examples of
worked-out word problems were deleted. In lieu of the latter, three
new training sets of word problems were constructed, based on three
distinct contents: money, people, and motion. The money problems
dealt with salaries, loans, and investments. For example:

Juanita went to work as a teller in a bank at a salary of $12,400
per year, and received constant yearly increases coming up with
a $ 16,000 salary during her seventh year of work. What was her
yearly salary increase?

The people problems dealt with population growth, student enroll-
ment, numbers of people in rows, and so on. For example:

In 1975 a total of 22,630 people attended conventions at a
convention center. If 2,000 more people attend conventions at
the center each year, how many people will attend the center in
1990?

Finally, the physics problems dealt with bodies moving in a straight
line with constant acceleration. Each set consisted of two examples

of worked-out problems and four practice problems. One worked-out
problem and two practice problems had the structure of arithmetic
sequences, and the other worked-out problem and two practice
problems had the structure of arithmetic series. Solutions for the four
practice problems were provided after subjects attempted to solve
them.

For use in pretest, posttest, and transfer sessions, six parallel sets
of word problems were constructed, two sets for each of the three
content areas. The first two problems in each set had the structure of
arithmetic sequences and the last two problems had the structure of
arithmetic series. The sets were equated with respect to which vari-
ables were given and which had to be solved for. Note that whereas
the problem sets in Experiment I included two sequence problems
and one series problem, in Experiment 2, we used an additional series
problem. This addition was intended to increase the sensitivity of the
transfer set. As mentioned above, the learned method for the series
problems, unlike that for the sequence problems, was qualitatively
different from the methods available to subjects before studying the
relevant chapter.

Procedure. The study was conducted in the Algebra II class during
regularly scheduled lectures and recitations. Students were informed
by their instructor that the following four classes would be taught by
a research team from the Learning Research and Development Center
affiliated with the University of Pittsburgh, who were developing
teaching materials in mathematics and science. Students were asked
to attend all the classes. The four experimental sessions were con-
ducted on 4 different days within 1 week. The activities on each day
were as follows:

1. Pretest session—Students took 20 min at the beginning of their
recitation to solve four pretest problems, consisting of one of the sets
for a given content. Seven students received money problems, 5
students received people problems, and 10 students received physics
problems. The regular teacher then took over to discuss previous
homework.

2. Training in algebraic equations—All students received a lecture
given by the experimenter, which consisted of the arithmetic-progres-
sions chapter as revised for the experiment. Each student received an
individual copy of the chapter. Overheads of the chapter were pre-
sented by the experimenter and were read out loud with minor
elaborations. Students were asked to solve the exercise problems
included in the chapter as homework, and to bring them back to their
next algebra recitation. This session lasted about 45 min,

3. Example word problems—After collecting the homework, the
experimenter distributed booklets containing worked-out examples
and practice word problems. The booklets were prepared individually
to match each student's pretest condition (e.g., students who had
received money problems on their pretest received money problems
as examples). Students studied the worked-out examples and the
practice problems, checking them with the sets that appeared at the
end of each booklet. After 20 min, the example booklets were
collected and students were given a posttest matching their content
condition. This posttest consisted of the set of four problems matched
to the set used as the pretest. Students were allowed 20 min to
complete their posttest.

4. Transfer session—This session was conducted separately (in
two different classrooms) for the "physics" students and for the
"money" and "people" students. The physics students were asked to
solve some more algebra problems, in order to help the research team
develop instructional materials in math. Half of the physics students
received the money transfer set and half received the people transfer
set. In each case the transfer set consisted of eight problems: both sets
of four for the relevant content, with the two sets presented in a
random order. The money and people students were asked to take a
physics test to help the research team develop instructional materials
in physics. This test consisted of the eight motion problems (two sets
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of four). Two simple filler problems involving calculation of distance
traveled preceded the eight transfer problems. All students were given
40 min to work on the transfer task. Afterwards, the students were
debriefed, and the similarities between the algebra and the physics
topics were explained.

Results and Discussion

Table 5 summarizes the results with respect to both prob-
lem-solving success (percentage correct) and frequency of
applying the learned method to the solution of the word
problems (scored as in Experiment 1). Because no significant
differences were obtained between the money and people
groups, data from these two conditions are collapsed in Table
5. Data for the two types of arithmetic-progression problems
(sequences and series) are presented separately.

The data were analyzed by an analysis of variance, with
problem type (sequences or series), training condition
(money/people or motion content), and test (pretest, posttest,
or transfer) as factors. The effect of the test was highly
significant for both percentage correct, F{2, 40) = 39.0, p <
.001, MS, =* .23, and for use of the learned method, F(2, 40)
= 159, p < .001, MS* = .29. The test factor was examined in
more detail using orthogonal contrasts (pretest vs. posttest
and transfer, and posttest vs. transfer). Collapsing over train-
ing conditions, a highly significant increase was obtained in
both percentage correct, r(40) = 17.4, p < .001, and use of
the learned method, /(40) = 35.2, p < .001, from the pretest
to posttest and transfer. The posttest and transfer tests did not
differ significantly in percentage correct, #40) — 1.4. However,
the learned method was used more frequently on the posttest
than the transfer test, /(40) - 5.91, p < .01, indicating that
transfer to examples with novel content was incomplete.

Overall percentage correct was higher for sequence than for
series problems, F{1, 20) = 23.1, p < .001, MSe = .30. In
addition, a marginally significant interaction was obtained
between problem type and test, F(2, 40) = 2.98, p = .06, MS,
= .30, reflecting a trend for the increase in percentage correct
from the pretest to the posttest and transfer tests to be signif-
icantly larger for the series problems. As noted with regard to
Experiment 1, the learned method provides a greater increase
in ease of solution for the series problems than for the se-

quence problems. Use of the learned method did not differ
significantly across the two problem types.

The results demonstrate that algebra training, even when
instantiated by examples of word problems drawn from a
single content domain, results in very high transfer to iso-
morphic problems used on a novel content domain. Indeed,
whereas none of the subjects applied the learned method on
the pretest, all of them applied it to at least some transfer
problems. Thus, the provision of disparate training examples,
as in Experiment 1, is not crucial to obtaining transfer of
algebraic procedures. Because Experiment 2 did not include
a multiple-content learning condition, we cannot conclude
that diversity of examples would not provide some additional
benefit. The degree of transfer produced by single-content
training, however, is sufficiently high that ceiling effects would
make it difficult to observe any added benefit of multiple
training contents. Although generalization by intersection of
features may play some role in learning from examples in
algebra, it is clear that a more knowledge-based mechanism
is operative. At least for students reasonably familiar with
arithmetic and algebra, the specific content of new types of
word problems is not treated as an important condition for
applying the arithmetic-progression methods. Meta-level
knowledge of the types of information that are relevant to the
solution of algebraic word problems apparently provides a
belief system that leads learners to avoid including content-
specific details in procedures derived from training examples.

Moreover, the amount of learning and transfer did not
differ across the money/people and motion training condi-
tions (F< 1). Just as much learning and transfer was produced
by training on motion problems as by training on the other
content domains. Thus, our previous results showing lack of
spontaneous transfer from physics to algebra cannot be attrib-
uted to either some intrinsic difficulty in learning from motion
examples or to use of a single training content per se. Rather,
it appears that transfer from physics to other domains is
blocked by the embedding of the physics equations within a
specific content domain. In physics, unlike algebra, content
cues involving motion concepts are encoded as conditions
that restrict the applicability of physics equations. Experiment
3 was designed to examine the role of such conceptual embed-
ding in impeding interdomain transfer.

Table 5
Performance Measures for Algebra and Physics Problems Under Single-Content Algebra Training in Experiment 2

Measure
Money or people training (N — 12)

Pretest
Posttest
Transfer

Physics training (TV = 10)
Pretest
Posttest
Transfer

% application of learned method

Sequences
%

0
100
71

0
100
85

Series
%

0
96
79

0
90
85

Total
%

0
98
75

0
95
85

%

Sequences
%

54
92
75

65
85
95

correct solutions

Series
%

17
83
58

20
55
80

Total
%

35
88
67

42
70
88

Note. The percentages are based on the average number of problems per subject, out of two possible sequences and two possible series problems
for the pretests and posttests, and out of four sequences and four series problems for the transfer tests.
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Experiment 3

The results of Experiments 1 and 2 indicate that instruction
in algebraic procedures is readily transferred to novel prob-
lems with physics content. Transfer is sufficiently robust that
it occurs even when the algebra instruction is accompanied
by examples of word problems with only a single content, and
the physics transfer problems are presented on a later day.
Experiment 3 was performed to investigate the limits of
algebra transfer and to test a leading hypothesis regarding the
conditions that limit transfer. The results of Experiment 2
indicate that students at the experience levels tested have
learned that domain-specific details in algebra word problems
are typically irrelevant to the applicability of algebraic equa-
tions. To the extent that the physics problems presented on
the transfer test are viewed as algebra word problems, the
motion concepts may be largely ignored, making transfer of
the algebraic procedures relatively easy. This is particularly
likely in the experiments reported so far because the physics
problems are presented after only minimal introduction to
physics as a content topic.

If the above analysis is correct, transfer of algebraic proce-
dures to physics problems should be reduced if the latter are
embedded in a context that emphasizes the potential relevance
of motion concepts to the problem solutions. Experiment 3
tested this hypothesis by varying the context in which the
physics transfer problems were embedded. One group received
the problems with only a minimal introduction to physics, as
in the previous experiments; a second group received them
after a more extensive introduction to the general topic of
physics; and a third group received the transfer problems after
an introduction to the specific motion concepts pertinent to
constant-acceleration problems. If conceptual embeddedness
interferes with cross-domain transfer, then at least the third
of these groups should exhibit lessened spontaneous transfer
from prior instruction in arithmetic progressions.

Method

Subjects. Subjects were 38 9th- and lOth-grade students from
private and public high schools in Pittsburgh who had not yet studied
either the topic of arithmetic progressions or the topic of motion in
a straight line with constant acceleration. All students came from
above-average math classes. The subjects included 8 male and 30
female students, who were paid for participating in the study.

Materials. Two sets of algebra problems and one set of physics
problems, similar to those used in Experiment I, were used in
Experiment 3. Each set consisted of four problems: The first two had
the structure of arithmetic sequences and the last two had the structure
of arithmetic series. The two sets of arithmetic-progressions problems
served as a pretest and as a posttest for the algebra groups. The role
of each set (pretest or posttest) was counterbalanced for subjects
within each experimental group. The set of constant-acceleration
problems served as a transfer set for the algebra groups and as a
pretest for the physics control group.

The instructional materials were based on those used in Experi-
ment 1. In addition, a five-page general introduction to physics,
without reference to accelerated-motion concepts, was taken from
the first introductory chapter from a high school physics text (Murphy
etal., 1982).

Procedure. All subjects were recruited for a study described as
directed at the development of new instructional materials for high
school mathematics and science curricula. All of the students expected
to study both an algebra and a physics chapter. Thirty-two subjects
were randomly assigned in approximately equal numbers to three
experimental conditions. These students studied the algebra chapter
and were subsequently tested on constant-acceleration problems. The
three groups differed solely with respect to the context in which the
physics transfer problems were subsequently presented. In addition,
6 subjects were assigned to a control group that solved a set of physics
problems without any prior training. This group provided a baseline
for comparing the performance of the algebra-trained subjects on
physics transfer problems.

For the experimental groups, the experiment was conducted in a
single two-part session. The initial part of the session lasted about 3
hr and consisted of a pretest on algebraic-progression problems,
studying the algebra chapter, and a posttest on the matched set of
algebra problems. The experimenter provided feedback only regard-
ing the solutions to the practice problems included in the chapter; no
feedback was provided for either the pretest or the posttest problems.
Up to this point, the session was identical for the three algebra-trained
groups.

After a 15-min refreshment break, all subjects in the experimental
groups proceeded to the physics transfer test. The three groups differed
in the context in which the transfer problems were embedded. The
context in the heading-embedded conditions was identical to that
used in the comparable transfer conditions in Experiments 1 and 2.
Students in this condition immediately proceeded with the transfer
test (four constant-acceleration problems). The physics problems were
presented as a pretest to the study of the physics chapter and were
introduced by a short paragraph describing the nature of problems
dealing with constant acceleration.

In the physics-embedded condition, students started by reading the
aforementioned five-page general introduction to physics. This chap-
ter introduced the role of hypotheses, theories, and experimentation
in science, including examples of famous theories such as that of
Galileo. It did not discuss concepts related to accelerated motion.
After reading the chapter, subjects were informed that they were
about to study a chapter dealing with accelerated motion and were
asked to solve the constant-acceleration problems as a pretest.

Subjects in the motion-embedded condition began by reading a
modified version of the physics chapter dealing with accelerated
motion that was used in the physics-instructed condition of Experi-
ment 1. They read the first five pages of the chapter, which included
all the concept definitions, examples, and explanations (such as the
distinction between uniform and accelerated motion). This material
ended prior to the section introducing the mathematical analysis of
motion; thus, no formulas for accelerated motion were introduced.
After reading this first part of the motion chapter, the students were
asked to solve a pretest of constant-acceleration problems.

The transfer part of the session lasted about 20 min for the heading-
embedded conditions and about 30 min for the physics-embedded
and motion-embedded conditions. Students talked out loud during
their pretest, posttest, and transfer problem-solving, and their entire
problem-solving protocol was tape-recorded for later analysis.

Results and Discussion

As in the previous experiments, the major dependent mea-
sure of transfer in Experiment 3 was the frequency with which
the learned algebraic procedures were applied to the structur-
ally isomorphic but unfamiliar physics problems. Table 6
presents the percentage of problems solved by the learned
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Table 6
Performance Measures for Algebra Training and Physics Transfer Problems for the Different Embedding Conditions in
Experiment 3

Condition

Motion embedded (N= 12)
Pretest
Posttest
Transfer

Physics embedded (JV = 12)
Pretest
Posttest
Transfer

Heading embedded (N = 8)
Pretest
Posttest
Transfer

Control (N= 6)
Pretest

% application of
learned method

Sequences Series

0
92
33

0
100
46

0
100
50

0

0
100
38

0
92
71

0
100
69

0

Total

0
96
35

0
96
59

0
100
59

0

% COIT

Sequences

75
88
88

71
96
83

62
94
69

67

ect solutio

Series

27
83
40

25
75
65

34
84
66

29

ns

Total

51
85
64

48
86
74

48
89
67

48

Solution time per problem

Sequences

2.10
1.80
1.12

2.08
1.99
1.23

1.65
1.71
1.18

1.35

(minutes)

Series

2.16
2.33
1.96

2.93
2.72
1.62

2.06
2.72
1.65

1.72

Total

2.13
2.07
1.54

2.50
2.36
1.43

1.86
2.21
1.41

1.54
Note. The percentages are based on the average number of problems per subject out of 2 possible sequences and 2 possible series problems.

method and the percent solved correctly for the various
conditions, as well as adjusted mean solution times, calculated
as in Experiment 1. The arithmetic-progression equations
were never used by any subjects prior to algebra training, as
would be expected. After training, all of the algebra students
applied the learned methods to the posttest algebra problems.
All students thus acquired the new method for the solution
of word problems dealing with the learned domain.

With respect to transfer, as measured by use of the learned
method on the unfamiliar physics problems, the learned
algebraic methods were applied to 52% of the physics prob-
lems (collapsing over all three context conditions). This figure
is of course greater than the zero frequency obtained on the
algebra pretest and for the untrained physics control group,
replicating the previous findings. The overall differences in
use of the learned method across the three tests given to
experimental subjects were highly significant, F(2, 58) = 119,
p < .001, MSe = .39. A planned comparison indicated that
the learned methods were used significantly less often on the
physics transfer test (52%) than on the algebra posttest (98%),
t(29) = 12.3, p < .01, indicating that transfer was incomplete.
A significant interaction was obtained between test and prob-
lem type, F{2, 58) = 3.76, p < .05, MSe = .14, which reflects
greater transfer of the learned method for the more difficult
series problems than for the sequence problems.

Although all three context conditions clearly produced
transfer of the learned method, there was some evidence that
less transfer was obtained in the motion-embedded condition
than in the physics-embedded and heading-embedded condi-
tions. Differences between frequencies of applying the learned
method to transfer problems were examined using planned
comparisons. Transfer frequency was significantly less for
subjects in the motion-embedded condition than for subjects
in the physics-embedded and heading-embedded conditions,
/(29) = 5.08, p < .01, MSC = 53; the latter two conditions did
not differ from each other, t(29) < 1. Only 5 of the 12 subjects

in the motion-embedded condition noticed the relevance of
the arithmetic progressions to the solution of the constant-
acceleration problems, and only 4 subjects actually applied
the learned equations to at least one of the physics problems.
In contrast, 10 of the 12 subjects in the physics-embedded
condition and 6 of the 8 subjects in the heading-embedded
condition applied the learned equations to the physics prob-
lems. The lesser frequency of subjects showing transfer in the
motion-embedded condition versus the other two conditions
was significant, x

2 0 , iV = 32) = 4.88, p < .05.
With respect to the percentage of correct solutions, we first

compared the success of the experimental groups on the
algebra pretest with the success of the control group on the
physics pretest. Because there was no difference in the baseline
success for the pretest problems regardless of their content,
the subsequent analyses were performed within subjects, com-
paring success on the physics transfer problems directly to
success on the algebra pretest. The effect of test was highly
significant, F{2, 58) = 23.0, p < .001, MS* = .38, as was the
interaction between test and problem type, F\2, 58) = 5.01, p
< .01, MS*e - .27, indicating a greater increase in percentage
correct with training for the more difficult series problems.
Neither the main effect nor any interactions involving training
condition were significant.

Mean solution times, adjusted in the same manner as in
Experiment 1, are also presented in Table 6. Solution times
were longer for series problems than for sequence problems,
F{\, 29) = 15.4, p < .001, MS, (in seconds) = 14,899, and
solution times varied significantly across tests, F{2, 58) =
7.52, p < .001, MSe = 21,149. Unlike the results of Experi-
ment 1, solution times were substantially lower for the physics
transfer test than for the algebra posttest. However, the solu-
tion times for the physics control group were just as short as
for the transfer group, suggesting that the time differences
reflected intrinsic differences between the algebra and physics
test problems, rather than the impact of training. Various
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procedural differences between Experiment 3 and Experiment
1 (e.g., the training materials for Experiment 3 did not include
test problems, and the posttest preceded rather than followed
the transfer test) prevent meaningful cross-experiment com-
parisons.

Overall, the results of Experiment 3 indicate that transfer
of algebraic procedures to unfamiliar physics problems is
somewhat impaired when the latter are presented in the
context of instruction about the relevance of the domain-
specific motion concepts. Even though no information about
solution procedures for motion problems was provided, em-
phasis on motion concepts created a context in which such
concepts were viewed as likely to be important to problem
solutions. Consequently, students were less likely to see that
their previously acquired knowledge of arithmetic progres-
sions was applicable to this new content.

We found no evidence, however, that a general discussion
of the topic area, as was provided in the physics-embedded
condition, is sufficient to impair interdomain transfer. Be-
cause students in the physics-embedded condition were not
given any specific and directly relevant information regarding
constant-acceleration problems, they apparently treated these
problems as members of the category of arithmetic-progres-
sion problems. Because the length of the intervening physics
instruction was equated for the physics-embedded and mo-
tion-embedded conditions, sheer amount of material is not
the critical factor. Rather than amount of contextual infor-
mation, or general physics context, what does seem to some-
what restrict transfer from algebra to physics is the introduc-
tion of physics information directly relevant to the concepts
mentioned in the physics word problems. The additional
meaning given to the various variables presented in these
problems makes it harder to strip away what now seems to be
relevant content and to recognize the structural similarity of
the new problems to those for which the algebraic methods
had been initially applied.

It should be emphasized that although transfer of algebraic
procedures was impaired in the motion-embedded condition,
it was by no means eliminated. A substantial number of
subjects succeeded in noticing the relevance of the learned
methods to the novel content despite the intervening domain-
specific instructional material. Also, an analysis of the talk-
aloud protocols from the transfer sessions, focusing on the
initial recognition of the relevance of the arithmetic-progres-
sions equations to the physics problems, revealed that in all
three experimental conditions students applied the algebraic
equations in the same straightforward manner as did the
algebra students in Experiment 1. (Because these analyses
essentially replicated the qualitative findings of the similar
analyses performed for Experiment 1, no protocol data are
presented for Experiment 3.) Thus, although fewer students
in the motion-embedded condition recognized the applicabil-
ity of the previously learned algebraic equations, those stu-
dents who did transfer did so not by explicit use of analogy,
but rather by treating the physics problems as simple new
cases of the familiar arithmetic progression problems. In
addition, for students who did not transfer, protocols revealed
no evidence of especially thorough analysis of the physical
situation, or of exceptional sensitivity to the units of motion.

No differences in qualitative analysis of the problem situation
were apparent when the protocols of the nontransferring
students were compared with those of students who did
transfer or when compared with their own solutions to algebra
problems dealing with a familiar content. Overall, the negative
impact of contextual embedding during transfer appears to
be substantially less than the impact of embedding the initial
learned procedures in the context of relevant domain-specific
concepts, as occurred for physics-trained subjects in Experi-
ment 1.

General Discussion

Summary and Implications

The present experiments provide clear evidence regarding
the conditions under which instruction in formal problem-
solving procedures yields transfer to word problems with novel
content. Training in algebraic equations for solving arithme-
tic-progression problems, coupled with exposure to example
word problems, allowed robust transfer to unfamiliar but
isomorphic constant-acceleration problems in physics. The
problem-solving protocols of the algebra subjects in Experi-
ments 1 and 3 indicated that the physics problems were
viewed as new instances of the learned category of arithmetic-
progression problems. Transfer was obtained even when the
initial examples used in algebraic instruction were drawn from
a single content area, such as money problems (Experiment
2). It appears that students with a moderate level of general
knowledge about the typical conditions of applicability for
mathematical procedures are able to effectively ''screen out"
content-specific details in algebra word problems and hence
learn relatively abstract applicability conditions for algebraic
procedures even when the content of the training examples is
overly restricted.

In contrast to the robust transfer observed from algebra to
physics, the results obtained with physics students in Experi-
ment 1 indicated that transfer between the two isomorphic
domains is strikingly asymmetrical. Students who had learned
how to solve constant-acceleration problems in a physics
course gave no indication that they recognized any similarity
between such problems and arithmetic-progression problems
with nonphysics content. The one physics subject in Experi-
ment 1 who noticed the relevance of the constant-acceleration
equations to the solution of the arithmetic-progression solu-
tion did so by means of an analogical remind-and-map proc-
ess, rather than by direct recognition that the transfer prob-
lems were of a familiar type. Her protocols also provided
evidence of a transition from transfer by analogical reminding
to transfer by application of generalized rules induced from
examples. The striking qualitative differences between her
protocol and those of algebra-trained subjects solving physics
problems suggest that explicitly analogical transfer between
domains is a distinctive and relatively difficult transfer mech-
anism (Carbonell, 1983, 1986; Gentner, 1983, in press; Gick
& Holyoak, 1983; Holyoak & Thagard, in press).

The general lack of transfer from physics to algebra cannot
be attributed to any intrinsic property of the physics problems,
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because algebra training coupled with problems dealing with
physics content produced as much transfer as training with
other contents of problems (Experiment 2). Rather, in study-
ing physics, students learn that the physical concepts involved
in word problems are critical to the applicability of the rele-
vant equations. Accordingly, they do not expect, and fail to
recognize, any direct relation between physics problem-solv-
ing procedures and isomorphic problems drawn from non-
physics domains. Students' perceptions of the importance of
domain concepts in determining transfer was further high-
lighted by the results of Experiment 3. When students were
asked to solve physics word problems in the context of a
detailed introduction to motion concepts, the likelihood that
they would apply the algebraic procedures they had learned
earlier was somewhat reduced.

Directions for Future Research

The results of the present study emphasize the importance
of domain-specific expectations in establishing applicability
conditions for problem-solving procedures, both during initial
encoding and during future access. These applicability con-
ditions in turn mediate the extent of subsequent transfer.
Also, since the source domain is usually the better practiced
one, the effect of content specificity may be stronger during
encoding than during access.

The present results have implications for deciding whether
one should teach general and content-free procedures or
strategies or teach procedures that are conditionalized on
content-specific cues and configurations. Although expertise
is generally based on content-specific knowledge, such knowl-
edge is likely to be bound to the domain of expertise. Because
there are numerous content-centered domains, such as phys-
ics, future research efforts should focus on possible instruc-
tional measures to teach these domains in a way that might
allow more flexible transfer. To follow Simon's (1980) rec-
ommendation: "To secure substantial transfer of skills ac-
quired in the environment of one task, learners need to be
made explicitly aware of these skills, abstracted from their
specific task content" (p. 82, italics added). For example,
transfer from physics might be obtained if the physics equa-
tions were taught in relation to analogous examples with
different contents (e.g., heat problems involving constant
increase in temperature).

Content-free domains are more of an exception. The pres-
ent study provides evidence for extensive transfer from the
domain of arithmetic progressions. We do not assume, how-
ever, that algebraic procedures are always learned in a content-
free fashion. Mathematical procedures are often tailored to a
certain subcategory of otherwise isomorphic problems. For
example, in typical work problems, the total work is treated
as a whole (i.e., 1 unit) and each worker's share is considered
to be a fraction of that whole, whereas in typical travel
problems the total distance is presented as a quantity (i.e., 90
km). Such focus on the specifics of the solution procedure,
when confounded with a single content for example problems,
may indeed obscure higher level structural similarity. Studies
on categorization of algebra word problems (e.g., Hinsley et
al., 1977; Mayer, 1981) and studies dealing with the use of

example solutions (Reed, 1987) indicate that algebra students
are very sensitive to various content cues. There is also
evidence, however, that good students (Krutetskii, 1976; Sil-
ver, 1981) or students who received appropriate training
(Schoenfeld & Herrmann, 1982) sort word problems more
according to their structure and solution method than accord-
ing to their content. It seems, then, that under appropriate
training conditions, solution procedures for algebra word
problems can often be accessed without dependence on con-
tent cues. In the present study, students received rather exten-
sive training in the general structure of arithmetic progres-
sions, yielding representations that were relatively content
free.

The results of Experiment 3, however, begin to delimit the
boundary conditions on spontaneous transfer of algebraic
knowledge. There is evidence that procedures learned as
methods of solving word problems are not readily applied to
more realistic problems in which simple keywords do not
suffice to cue relevant equations (di Sessa, 1982). It is possible
that a content-free encoding of algebraic procedures needs to
be further supplemented by training in abstracting new target
problems from their rich contextual constraints. More work
remains to be done to explore this possibility.

Another important question that remains to be investigated
is whether the effect of context specificity during the initial
encoding of the problem-solving procedures is limited to
preventing spontaneous access, or whether it also prevents the
application of these procedures even when people are in-
formed about their relevance. An empirical study of this
question would have to include an exploration of the effects
of active interventions at the time of the transfer tests. In the
present study, subjects were given no direct cues that the
initially learned procedures were applicable to the novel trans-
fer problems; indeed, the latter were presented in the context
of instruction in a different topic. We do not know whether
the content specificity that prevents spontaneous transfer
from physics to isomorphic problems with nonphysics content
would still preclude transfer even if the relevance of the
physics training was highlighted rather than obscured. It
would be useful to examine transfer under conditions in which
subjects are actively encouraged to apply the learned physics
methods to transfer problems and perhaps are given guidance
by a teacher in performing the required mapping between
transfer problems and the learned equations.

Whatever the outcome of such further investigations, our
present findings should temper the prevalent opinion among
cognitive scientists that spontaneous transfer between rela-
tively dissimilar problems is invariably difficult to obtain.
Many previous studies have sought transfer, often unsuccess-
fully, under the most difficult possible conditions, with only
a single isolated example as the basis for potential transfer
(see Brown et al., 1986). The present study indicates that,
given learning conditions conducive to acquisition of rela-
tively general applicability conditions for problem-solving
procedures, people are able to readily recognize structurally
similar examples despite their unfamiliar surface features. We
have begun, but hardly completed, the larger task of exploring
the boundary conditions on transfer in the presence of various
forms of content-specific interference.
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