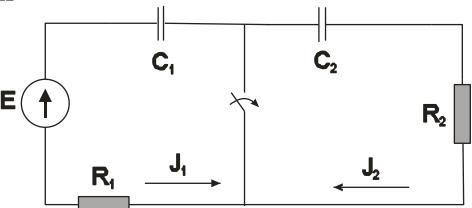

Направление «Электроника и наноэлектроника»

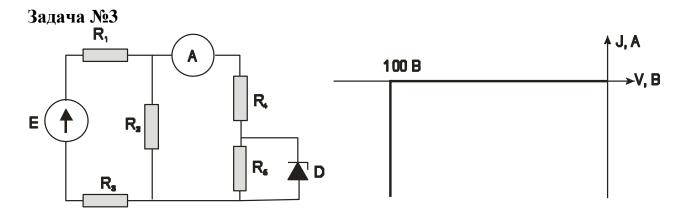
Профиль: «Электроника и наноэлектроника»

КОД - 070

Время выполнения задания – 180 мин.

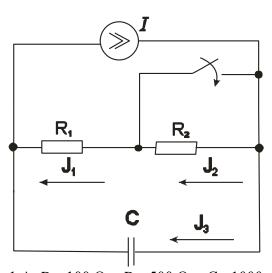

Задача №1

Дано: E_1 =100 B; E_2 =500 B; R_1 =1 кОм; R_2 =4 кОм; R_3 =5 кОм; R_4 =500 Ом; R_5 =10 кОм; R_6 =100 Ом;


Найти показания вольтметра. Решение объяснить.

Задача №2

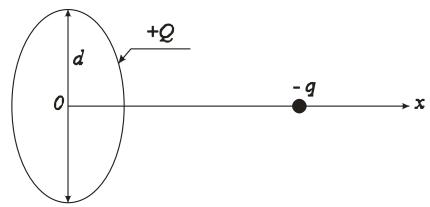
Дано: E=100 B; R_1 =1 кОм; R_2 =100 Ом; C_1 =250 пФ; C_2 =500 пФ.


- Определить значения токов в ветвях и напряжения на емкостях до момента коммутации.
- Определить значения токов в ветвях и напряжения на емкости в первый момент после коммутации.
- Нарисовать качественные зависимости токов в ветвях и напряжения на емкостях от времени.
- Определить установившиеся значения токов в ветвях и напряжения на емкостях после коммутации.

Дано: $E=150~B;~R_1=20~Om;~R_2=200~Om;~R_3=30~Om;~R_4=50~Om;~R_5=150~Om;~D-стабилитрон на напряжение стабилизации 100 В. Вольтамперная характеристика стабилитрона приведена на рисунке.$

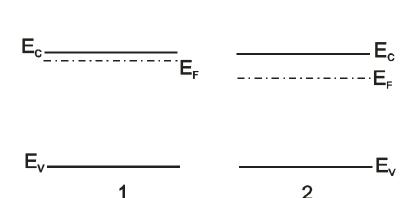
Найти показание амперметра. Решение объяснить.

Задача №4


Ток генератора тока равен 1 A; R_1 =100 Ом; R_2 =500 Ом; C =1000 $\pi\Phi$.

- Определить значения токов в ветвях и напряжение на емкости до момента коммутации.
- Определить значения токов в ветвях и напряжения на емкости в первый момент после коммутации.
- Нарисовать качественные зависимости токов в ветвях и напряжения на емкости от времени.
- Определить установившиеся значения токов в ветвях и напряжения на емкости после коммутации

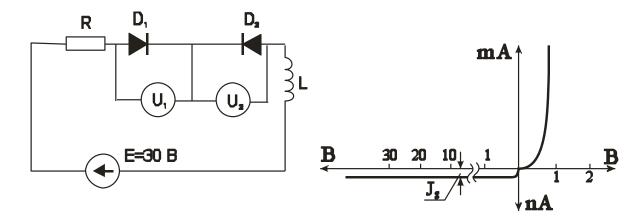
Задача №5


Отрицательный точечный заряд ($-\mathbf{q}$) движется из бесконечности по прямой, проходящей через центр металлического кольца диаметром d, имеющего заряд +Q (см. рис.). Нарисовать (качественно) график зависимости силы, действующей на точечный заряд, от расстояния x.

Олимпиада для студентов и выпускников – 2016 г.

Решение объяснить.

Задача №6



На рисунке приведены энергетические диаграммы двух кремниевых кристаллов при одинаковой температуре. Провести качественное сравнение:

- концентрации свободных электронов
- концентрации свободных дырок
- подвижности электронов
- подвижности дырок
- удельной электропроводности

Ответы аргументировать.

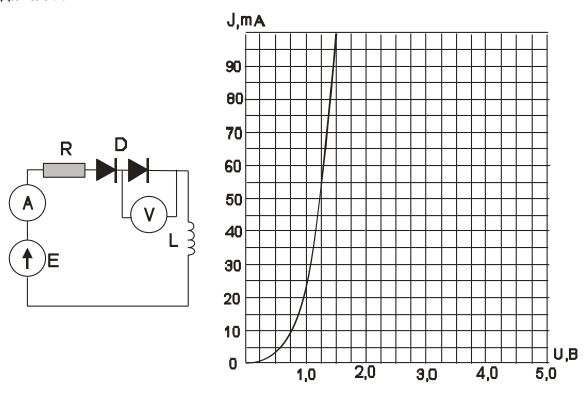
Задача №7

Дано: E=30 B; R=100 кОм; L=100 Гн.

Олимпиада для студентов и выпускников – 2016 г.

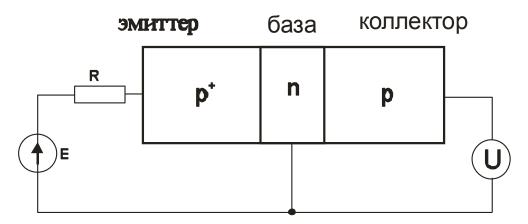
Оба диода тождественны и обладают одинаковыми вольтамперными характеристиками

(см. рис.). Уравнение вольтамперных характеристик имеет вид: $J=J_{S}\left(e^{\pm rac{qU}{kT}}-1
ight)$, где J_{S}


=10 нА, q — заряд электрона, T — температура, равная 300К, k-постоянная Больцмана (kT при температуре 300К считать равным 0,0259В).

Определить показания вольтметров с точностью до третьего знака после запятой. Описать алгоритм решения задачи.

Задача №8


Конденсатор емкостью $C_1=10$ мкФ, заряженный до разности потенциалов $V_1=100$ В, соединили с конденсатором емкостью $C_2=5$ мкФ разноименно заряженными обкладками, разность потенциалов на обкладках которого V_2 неизвестна. Разность потенциалов между обкладками после соединения равна $V_{\text{общ.}}=200$ В. Найти неизвестную разность потенциалов V_2 .

Задача №9

Дано: E = 5 B; R = 50 Ом; L = 100 Гн; прямая ветвь вольтамперной характеристика диода задана графически. Оба диода идентичны. Определить показания вольтметра и амперметра. Описать алгоритм решения.

Задача №10На рисунке приведена схема включения бездрейфового транзистора.

E=100~B,~R=1~кОм. Транзистор рассчитан на максимальный ток коллектора 100~k МА. Что будет показывать вольтметр? (Задача решается на качественном уровне). Будет ли зависеть показание вольтметра от материала, из которого сделан транзистор (кремний, германий)?

Ответ подробно аргументировать.