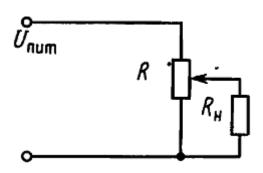

Демонстрационный вариант по электронике и вычислительной технике 10 класс

1. Задача 1

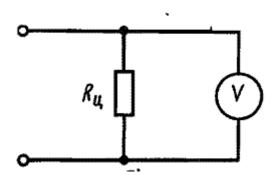
Один из наиболее широко применяемых в электронных схемах элемент – это резистор. На участке цепи соединены четыре резистора, как показано на схеме. Сопротивления резисторов равны: $R_1 = R_2/2 = R_3/2 = R_4/4 = 2$ Ом. Схема подключена к источнику постоянного тока. На каком из резисторов выделяется наибольшее количество теплоты?



1 0	На резисторе <i>R</i> ₁
2 0	На резисторе <i>R</i> ₂
3 💿	На резисторе <i>R</i> ₃
4	На резисторе <i>R</i> ₄
5 🗅	На резисторах R_2 и R_3

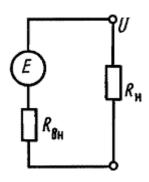
2. Задача 2

Для изменения параметров цепи электронной схемы применяют переменные резисторы. На приведенной схеме резистор нагрузки сопротивлением $R_H = 30$


кОм подключен к подвижному контакту переменного резистора R. В среднем положении подвижного контакта через сопротивление нагрузки течет ток 2 мА. Найдите ток через резистор нагрузки, если подвижной контакт переменного резистора переместить в крайнее верхнее положение по схеме. Напряжение питания U_{num} равно 100В. Ответ округлить до сотых.

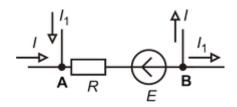
1	0	Ток через <i>R</i> _н равен 2,56 мА		
2	•	Ток через <i>R</i> _н равен 3,33 мА		
3	0	Ток через <i>R</i> _н равен 4,50 мА		
4	0	Ток через <i>R</i> _н равен 5, 43 мА		
5	0	Ток в цепи не изменится и равен 2 мА.		

3. Задача 3


Участок цепи имеет сопротивление $R_{\rm ц}$ равное 1 кОм. Для измерения падения напряжения к участку подключают вольтметр с внутренним сопротивлением 33 кОм. Определить относительное изменение тока в цепи, вызванное подключением вольтметра. Напряжение на концах цепи поддерживается постоянным.

1	•	Ток в цепи увеличится на 3%

2 0	Ток в цепи уменьшится на 3%
3 0	Ток в цепи увеличится на 5%
4 O	Ток в цепи уменьшится на 5%
5 0	Ток в цепи не изменится


Для цепи постоянного тока, показанной на рисунке, источник имеет напряжение холостого хода 24 В и ток короткого замыкания 8 А. При каком сопротивлении нагрузки R_H кпд источника равен 90% ?

10	При сопротивлении нагрузки $R_{\rm H}$ равном 8 Ом
2 0	При сопротивлении нагрузки $R_{\rm H}$ равном 12 Ом
3	При сопротивлении нагрузки $R_{\rm H}$ равном 21 Ом
4	При сопротивлении нагрузки $R_{\rm H}$ равном 27 Ом
5 0	При сопротивлении нагрузки $R_{\rm H}$ равном 34 Ом

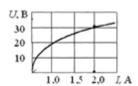
5. Задача **5**

Для схемы, изображённой на рисунке, ток I_1 =10 мA, резистор R=2 кОм, э.д.с. E=15 B, напряжение U_{BA} =9 B. Ток I равен ...

1 0	-7 мА
2 💿	–22 mA
3 0	13 MA
4 0	2 mA

В заданной схеме усилительного каскада на биполярном транзисторе $E_K=12~B,$ $U_{\rm E3}=0.6~B,$ $\beta=100,$ $U_{\rm K3}=6~B,$ $I_K=50$ мА. R_K и R_B равны . . .

1 0	$R_{\rm K} = 0.5 {\rm MOM}, R_{\rm B} = 1 {\rm KOM}$
2 0	$R_{\rm K} = 120$ кОм, $R_{\rm B} = 2,28$ кОм
3	$R_{\rm K}$ = 24 кОм, $R_{\rm B}$ = 6 кОм
4 💿	$R_{\rm K}$ = 120 Ом, $R_{\rm B}$ = 22,8 кОм


7. Задача 7

Диоды, включённые в заданную схему, оказались неодинаковыми, их вольтамперные характеристики приведены на рисунке. Для того, чтобы в ветвях 1 и 2 были одинаковые токи в 3,5 A, было решено включить в схему дополнительный резистор. Определить местоположение и номинал дополнительного резистора.

1	0	последовательно с VD1, номинал 0,38 Ом

2	последовательно с R, номинал 10,2 Ом
3	последовательно с VD2, номинал 0,21 Ом
4	параллельно с VD1 и VD2, номинал 2,1 Ом
5 0	предложенный способ не решает проблему

Статическое сопротивление нелинейного элемента при токе 2 А равно

1	0	20 Ом
2	•	15 Ом
3	0	67 MOM
4	0	50 мОм

9. Задача 9

Переведите число 63035.1 8 в двоичную систему счисления.

1	0	110111010001101.101
2	0	110011010011101.001
3	•	110011000011101.001
4	0	1110011010011101.001
5	0	110010010011101.01

Сколько значащих единиц в двоичной записи числа 16^60-8^32?

1	•	144
2	0	146
3	0	148
4	0	152
5	0	154

11. Задача 11

Чему равен результат вычисления $1024\ 10\ +11246\ 7\ -259\ 11\$ в шестнадцатеричной системе счисления?

1 0	EF6
2 0	E5A
3 💿	EBE
4 0	E74
5 0	ED4

12. Задача 12

Найти количество путей из начального пункта (S) в конечный (E).

1	0	31
2	0	15

3	0	18
4	•	20
5	0	28

13. Задача 13*

Дано логическое выражение:

$$y = \overline{(c+b)} \cdot \overline{a} + (\overline{a \cdot c} \oplus \overline{b})$$

Найти все правильные строки со значениями переменных:

1 🗆	a=0, b=0, c=1, y=1
2 🔽	a=1, b=1, c=1, y=0
3 🔽	a=1, b=1, c=0, y=1
4 🗆	a=1, b=0, c=1, y=0
5 🔽	a=0, b=0, c=0, y=1

14. Задача 14*

Дана таблица истинности логической функции $y^o = {}^o f^o(A,B,C)$:

A	В	С	у
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Составить совершенную дизъюнктивную нормальную форму логической функции.

1	0	$(A \lor B \lor C)(A \lor B \lor \overline{C})(\overline{A} \lor B \lor C)(A \lor \overline{B} \lor \overline{C})$
2	0	$A\overline{B}C \vee \overline{A}B\overline{C} \vee \overline{A}BC \vee A\overline{B}\overline{C}$
3	0	$\overline{A}\overline{B}\overline{C} \vee \overline{A}\overline{B}C \vee \overline{A}\overline{B}\overline{C} \vee ABC$
4	•	$\overline{A}\overline{B}\overline{C}\vee\overline{A}\overline{B}C\vee\overline{A}BC\vee A\overline{B}\overline{C}$
5	0	$(\overline{A} \vee \overline{B} \vee \overline{C})(\overline{A} \vee \overline{B} \vee C)(\overline{A} \vee B \vee C)(A \vee \overline{B} \vee \overline{C})$
6	0	$(\overline{A} \vee B \vee \overline{C})(\overline{A} \vee \overline{B} \vee C)(\overline{A} \vee B \vee C)(A \vee \overline{B} \vee C)$

15. Задача 15

Николай пользуется услугами различных банков. В результате у него накопилось много различных карт. На каждой карте установлен уникальный пин-код из 4-х цифр. Николаю лень запоминать все пин-коды, поэтому он заучил всего один мастер-код и на всех картах написал пин-коды по следующей схеме: 1) Если цифра мастер-кода больше соответствующей цифры пин-кода, то он писал их разницу с подчеркиванием снизу; 2) Если цифра мастер-кода меньше либо равна соответствующей цифре пин-кода, то он писал их разницу без подчеркивания.

Например, если бы мастер-код был 1234, а пин-код - 5914, то на карте Николай написал бы следующее: 4720.

Девушка Николая Светлана считает такой способ кодирования небезопасным и решила это доказать, раскодировав пин-код на его дебетовой карте. Мастер-код она не знает, закодированный пинкод написан на карте. Светлана невезучая, ей не удастся угадать пин-код случайным образом; пин-коды она набирает не подряд, но не повторяется; т.е. ей придется перебрать все возможные варианты пока она не найдет верный. Посчитайте, сколько вариантов ей придется перебрать в самом худшем для нее случае:

1	0	9999
2	0	100000
3	•	10000
4	0	99999
5	С	1000
6	С	1001
7	0	10101