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Introduction35

Complex networks formed by interactions between brain regions are involved in cognitive functions. Analyzing36

these networks using network theory could crucially enable the identification of network features relevant to37

specific cognitive functions, which may further our understanding of the mechanisms that underlie cognitive38

functions (Liao et al., 2017; Bullmore and Sporns, 2009; Sporns, 2018). For example, studies have shown that39

the manifestation of module structures (i.e., modularity) predicts high performance in working memory tasks40

(Stevens et al., 2012; Finc et al., 2017; Gamboa et al., 2014; Liang et al., 2016; Finc et al., 2020). Moreover,41

research on small-world properties has demonstrated that the e�ciency of signal propagation between brain42

regions (i.e., network e�ciency) can predict an individual’s intellectual capacity (van den Heuvel et al., 2009).43

One relationship between network features and cognitive functions that has attracted considerable attention44

is the link between the bidirectionality of networks and conscious perception. Empirical research has shown45

that conscious perception of a sensory stimulus requires bidirectional signaling that involves both feedforward46

and feedback signal propagation (Cauller and Kulics, 1991; Lamme et al., 1998; Supèr et al., 2001; Self et47

al., 2012; Auksztulewicz et al., 2012; Sachidhanandam et al., 2013; Tang et al., 2014; Koivisto et al., 2014;48

Manita et al., 2015). Moreover, the importance of bidirectional interactions in consciousness is independent49

of sensory modality (Dembski et al., 2021) (vision (Lamme et al., 1998; Supèr et al., 2001; Self et al., 2012;50

Tang et al., 2014; Koivisto et al., 2014), somatosensation (Cauller and Kulics, 1991; Auksztulewicz et al., 2012;51

Sachidhanandam et al., 2013; Manita et al., 2015), and audition (Gutschalk et al., 2008; Dykstra et al., 2016;52

Eklund and Wiens, 2019; Schlossmacher et al., 2021; Hayat et al., 2022)).53
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Based on these experimental findings and theoretical insights, to understand the relationship between the54

brain network and conscious perception, the identification of brain subnetworks that have strong bidirectional55

interactions and ascertaining how these subnetworks relate to conscious perception is pivotal. However, the56

identification of such subnetworks has been challenging. To date, methods for extracting subnetworks with57

strong connections have been applied to brain functional networks (e.g., s-core decomposition (Chatterjee and58

Sinha, 2007; van den Heuvel and Sporns, 2011; Harriger et al., 2012; Crobe et al., 2016), network hubs (van den59

Heuvel and Sporns, 2013; Royer et al., 2022), rich clubs (van den Heuvel and Sporns, 2011; Liang et al., 2018;60

Wang et al., 2020), and modularity (Bertolero et al., 2015; Chen et al., 2021)). However, the abovementioned61

methods do not consider the direction of influence, particularly the bidirectionality of interactions. Consequently,62

the locations of the subnetworks with pronounced bidirectionality and their links to cognitive functions, including63

conscious perception, remain elusive.64

To address this gap, we propose a novel framework for extracting subnetworks with strong bidirectional65

interactions from brain activity that were designated as “cores.” We applied this framework to functional66

magnetic resonance imaging (fMRI) data to identify the regions that constitute strongly bidirectional cores and67

subsequently performed two analyses on the identified regions: one that examined the relationship of the core68

regions with conscious perception and the other that explored the association of the core regions with cognitive69

functions. The following section provides an overview of this analysis.70

First, we investigated the brain regions that were more likely to be components of strongly bidirectional71

cores. If certain brain regions consistently appear in the cores under various conditions, this would suggest their72

general importance in conscious perception and a broad range of cognitive functions. Therefore, using data from73

the Human Connectome Project (HCP) (Van Essen et al., 2013), we extracted the cores at rest and during seven74

cognitive tasks. Our objective was to determine the brain regions that consistently form strongly bidirectional75

cores under resting-state and task conditions.76

We subsequently investigated the association of the core regions with conscious perception. We focused on77

a previous study wherein electrical brain stimulation was used to assess the association of brain regions with78

conscious perception (Fox et al., 2020). We posited that, if regions within strongly bidirectional cores are integral79

to conscious perception, then, stimulation of these regions would propagate e↵ects throughout the cores, and80

thereby result in alterations of conscious perception. Therefore, in this study, we compared the likelihood of81

each region of interest (ROI) being included in strongly bidirectional cores and the rate at which the intracranial82

electrical stimulation (iES) (Fox et al., 2020) of each ROI elicited a change in conscious perception. iES involves83

direct electrical stimulation of the brain via intracranially placed electrodes (Borchers et al., 2011) that enable84
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causal modulation of neural activity. Prior research has quantitatively evaluated the extent to which the iES85

of each brain region induces reportable changes in conscious perceptual experiences across the entire cerebral86

cortex (Fox et al., 2020). We investigated whether the rates of perceptual change elicited by iES (elicitation87

rates) were associated with the probability of being included in strongly bidirectional cores. Higher elicitation88

rates of regions that are more likely to be part of strong cores would suggest a significant association between89

strongly bidirectional cores and conscious perception.90

Then, to investigate the association of the cores with cognitive functions more broadly, we performed a91

hypothesis-free meta-analysis using NeuroSynth (Yarkoni et al., 2011). NeuroSynth is a platform for examining92

associations between brain regions and specific psychological and neurological terms based on a large database93

of fMRI studies. Using this tool, thousands of fMRI data can be aggregated to identify statistical associations94

between ROIs and specific terms, such as “memory” and “attention.” This approach facilitated the identifica-95

tion of di↵erences in the associated terms between ROIs with a strong or weak tendency to be included in the96

cores. Finally, to further assess the association of the cores with cognitive function, we examined the relationship97

between the cores to a functional connectivity gradient (Margulies et al., 2016). The gradient is known to corre-98

spond to a spatial gradient over the cerebral cortex, ranging from unimodal sensory to higher-order association99

regions.100
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Materials and Methods101

fMRI Data Acquisition and Preprocessing102

The 3T-fMRI data were obtained from the Washington University-Minnesota Consortium Human Connectome103

Project (HCP, (Van Essen et al., 2013)). The data were approved by the Institutional Review Board of the104

University of Washington. From the HCP 1200 Subjects Data Release (Van Essen et al., 2013) (www.humanc105

onnectome.org/), we used 352 subjects in accordance with the criteria proposed in ref. (Ito et al., 2020). The106

selection of the 352 participants (183 females, ages 22-36 years) was based on three main criteria: quality control107

assessments, motion artifacts, and family relations. Participants were excluded if they had any quality control108

flags, including focal anatomical anomalies found in T1-weighted or T2-weighted scans, focal segmentation or109

surface errors detected by the HCP structural pipeline, data collected during periods with known issues with the110

head coil, or data where some of the FIX-ICA components were manually reclassified. Participants were also111

excluded if any fMRI run had more than 50% of the repetition times (TRs) with framewise displacement greater112

than 0.25 mm to minimize motion artifacts. Additionally, only unrelated participants (i.e., non-familial) were113

included, and those without genotype testing data were excluded. A full list of participants are included as part114

of the code release of ref. (Ito et al., 2020).115

In the HCP study, imaging was performed on a 3T Siemens Skyra scanner with a 32-channel head coil,116

utilizing a multiband acceleration factor of 8. The imaging parameters included a TR of 720 ms, TE of 33.1 ms,117

a flip angle of 52º, and an isotropic resolution of 2.0 mm. The data collection spanned two days: Day 1 involved118

anatomical scans (T1 and T2-weighted images at 0.7 mm isotropic resolution), followed by two 14.4-minute119

resting-state fMRI scans (Rest 1, the left-right (LR) and right-left (RL) scans) and task fMRI scans. The second120

day included a di↵usion imaging scan, another two 14.4-minute resting-state fMRI scans (Rest 2, LR and RL121

scans), and additional task fMRI sessions.122

We started with minimally preprocessed fMRI data at rest and during seven cognitive tasks (emotion, gam-123

bling, language, motor, relational, social, and working memory), and we performed denoising by estimating124

nuisance regressors and subtracting them from the signal at every vertex (Satterthwaite et al., 2013). Accord-125

ingly, we used 36 nuisance and spike regressors, developed by ref. (Satterthwaite et al., 2013), that comprised:126

(1–6) six motion parameters, (7) white-matter time-series, (8) cerebrospinal fluid time-series, (9) global signal127

time-series, (10–18) temporal derivatives of (1–9), and (19–36) quadratic terms for (1–18). The spike regressors128

were computed as described previously in ref. (Satterthwaite et al., 2013), with 1.5-mm movement used as a129

spike-identification threshold. These fMRI data have a temporal resolution (TR) of 0.72 seconds. The number130
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of frames for rest and each task state is as follows: emotion, 176; gambling, 253; language, 316; motor, 284;131

relational, 232; social, 274; working memory, 405; and rest, 1200 frames.132

Using the methodology proposed in ref. (Luppi and Stamatakis, 2021), we parcellated the cerebral cortex and133

subcortex into 200 and 32 ROIs, based on Schaefer’s parcellation (Schaefer et al., 2018) and Tian’s parcellation134

(Tian et al., 2020), respectively, that generated a total of 232 ROIs. Functional and structural networks obtained135

using this parcellation are close to the average of those derived from other parcellations, which makes them136

representative networks (Luppi and Stamatakis, 2021) and, accordingly, we employed this parcellation in this137

study. We normalized the time-series data for each session to z-scores and then applied a 0.008–0.08 Hz second-138

order Butterworth band-pass filter.139

Estimation of directed functional network140

To extract cores with strong bidirectional interactions, it is first necessary to quantify the statistical causal

strengths between brain regions and construct a directed network. For this purpose, we computed the normalized

directed transfer entropy (NDTE, (Deco et al., 2021)) for each pair of ROIs from the BOLD signals: We fitted

a bivariate vector autoregressive (VAR) model to the BOLD signals X and Y of each pair of ROIs and set the

lag order T of the VAR model to 10. A bivariate VAR(T ) model for the process Zt =

0

B@
Xt

Yt

1

CA, where Zt is a

2-dimensional vector of the two time series at time t, takes the form:

Zt =
TX

k=1

AkZt�k + ✏t

whereAk are 2⇥2 regression coe�cient matrices, and the 2-dimensional vector ✏t is the residuals. The parameters141

of the model are the coe�cient matrices Ak and the covariance matrix of the residuals ⌃ = cov(✏t), which is142

time-invariant due to stationarity.143

The estimation of the VAR model was performed using locally weighted regression, using data from the144

left-right (LR) and right-left (RL) scans of 352 subjects as trials, resulting in 704 trials for each graph of each145

task (emotion, gambling, language, motor, relational, social, and working memory) and rest (Rest 1, Rest 2).146

There were two resting-state sessions in the HCP data, Rest 1 and Rest 2, and here we constructed graphs for147

each of the Rest 1 and Rest 2 sessions. The Multivariate Granger Causality Toolbox (Barnett and Seth, 2014)148

was employed for these computations.149

Subsequently, the transfer entropy (TE) for each pair of ROIs was calculated using the parameters of this

estimated VAR model. TE TXY from the ROI X to ROI Y quantifies how much the past activity of X con-
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tributes to predicting the future of Y (Deco et al., 2021). Mathematically, TXY is conditional mutual information

I
�
Yi+1;Xi | Y i

�
that can be written using entropy as

TXY = I
�
Yi+1;X

i | Y i
�
= H

�
Yi+1 | Y i

�
�H

�
Yi+1 | Xi

, Y
i
�

(1)

where Yi+1 denotes the activity of the ROI Y at time i + 1, and X
i and Y

i denote the history of activity of

X and Y (Xi :=
�
Xi, Xi�1, . . . , Xi�(T�1)

�
and Y

i :=
�
Yi, Yi�1, . . . , Yi�(T�1)

�
, respectively). Thus, TE quantifies

the reduction in uncertainty of Yi+1 when Y
i and X

i are known, compared to when only Y
i is known. Then,

aiming to add and compare the TE between di↵erent ROI pairs, we normalized TE by mutual information and

obtained NDTE FXY (Deco et al., 2021):

FXY = TXY/I
�
Yi+1;X

i
, Y

i
�
= I

�
Yi+1;X

i | Y i
�
/I

�
Yi+1;X

i
, Y

i
�
. (2)

The normalization factor I
�
Yi+1;Xi

, Y
i
�
is the mutual information between Yi+1 and X

i
, Y

i, and can be decom-

posed as

I
�
Yi+1;X

i
, Y

i
�
= I

�
Yi+1;X

i | Y i
�
+ I

�
Yi+1;Y

i
�
. (3)

This decomposition indicates that the normalization compares the predictability of Yi+1 by X
i | Y

i (i.e.,150

I
�
Yi+1;Xi | Y i

�
) with the internal predictability of Yi+1 by Y

i (i.e., I
�
Yi+1;Y i

�
).151

First, we performed edge thresholding based on statistical significance. To achieve this, we generated 100152

surrogate data sets using block permutation (via block permute 01 from the MVGC toolbox) and applied kernel153

density estimation (from the MATLAB function ksdensity) to their distributions to calculate the p-values. For154

the block size in block permutation, we followed the recommendation of setting it to the order of the VAR model155

(Barnett and Seth, 2014) and used a block size of 10. After obtaining the p-values, we retained only the edges156

that surpassed the significance level (↵= 0.05, with Bonferroni correction).157

As mentioned above, we used the block permutation method to generate surrogate data, whereas the original158

NDTE framework used the circular shift method (Deco et al., 2021). The reason we did not use the circular shift159

method is that the method is not suitable for data with a short length. The circular shift method generates only160

a limited number of surrogates when data length is short. For example, for the Emotion task, which contains161

approximately 200 time points, if we set the minimum shift width to 10 time points, as done in the study by162

Deco et al., we obtain only about 20 surrogates that di↵er from each other by more than 10 time points. This163

increases the likelihood that the surrogates will closely resemble each other if the number of surrogates is more164
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than 20. In contrast for the block permutation, with a block size of 10, as we did, it divides the 200 time points165

into 20 blocks of 10 points each, yielding approximately 20! unique combinations. This approach substantially166

increases the number of possible surrogates and reduces the chance of surrogates resembling each other, making167

block permutation a more robust choice for surrogate data generation.168

Subsequently, we adjusted the graphs to have a fixed density, as it is generally considered appropriate to169

compare graphs with equal densities (van Wijk et al., 2010; Luppi and Stamatakis, 2021; van den Heuvel et170

al., 2017; Jalili, 2016). Given that anatomical connections in brain networks are typically sparse (with densities171

around 20% or less) (Bullmore and Sporns, 2012; Hagmann et al., 2008; Luppi and Stamatakis, 2021), and that172

much of the functional connectivity may be spurious due to this sparsity (Luppi and Stamatakis, 2021), we173

retained only the strongest edges to match the reference densities of 5%, 10%, and 20%.174

Extraction of bidirectionally interacting cores175

From the directed network constructed using NDTE, we extracted subnetworks with particularly strong bidi-176

rectional connections—the network “cores.” To identify such cores, our proposed framework uses the algorithm177

proposed by Kitazono et al. (Kitazono et al., 2023). This algorithm enables the hierarchical decomposition of178

the entire network based on the strength of bidirectional connections.179

To demonstrate how the algorithm works, we present its application to a simple toy network in Fig. 1c. In180

the toy network, the node set {B,E, F, I, J} is connected bidirectionally whereas the node set {A,C,D,G,H}181

is connected in a feedforward manner. Extracting cores from this network according to the method of Kitazono182

et al. (Kitazono et al., 2023) reveals the network cores, as indicated by various shades of color. The subnetwork183

{E,F, I, J}, highlighted in orange, represents the core with the strongest bidirectional connections, followed184

by the subnetwork {B,E, F, I, J}, shown in blue. As shown in this example, cores with stronger bidirectional185

connections are nested within those with weaker bidirectional connections and thus generally form a unimodal186

or multimodal hierarchical structure.187

Below, we outline the definition of cores according to the method of ref. (Kitazono et al., 2023). A core is188

defined as a subnetwork that cannot be separated because of its strong bidirectional connections. To define a189

core, we first introduce the definition of the strength of bidirectional connections. Based on the definition of190

the strength, we introduce a minimum cut that quantifies the inseparability of a network, which is then used to191

define cores. Subsequently, we introduce “coreness”—an index, which is defined for each node, that quantifies192

the strength of the core in which each node is included.193
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Strength of bidirectional connections194

In this subsection, we introduce a measure that quantifies the strength of bidirectional connections between two

parts of a network. Let us consider a directed graph G(V,E) where V denotes the node set and E the edge set.

For a bi-partition of (VL, VR) of the node set V , there are two types of edges connecting VL and VR, determined

by their direction. One is the set of edges that outgoing from VL to VR:

E(VL ! VR) = {(u, v) 2 E|u 2 VL, v 2 VR}. (4)

The other is in the opposite direction:

E(VR ! VL) = {(u, v) 2 E|u 2 VR, v 2 VL}. (5)

To evaluate the strength of bidirectional connections between VL and VR, we first sum up the weight of the edges

in each direction,

w(VL ! VR) =
X

e2E(VL!VR)

we, (6)

w(VR ! VL) =
X

e2E(VR!VL)

we. (7)

We then define the strength of bidirectional connections as the minimum of the two:

w(VL;VR) := min (w(VL ! VR), w(VR ! VL)) . (8)

With this definition, when two segments of a network are linked only unidirectionally, the strength of the195

bidirectional connections w(VL;VR) equals zero (Figure 1c(i); this indicates that the segments are bidirectionally196

“disconnected.” In Figure 1c(ii), the connection from one segment to the other is strong (w(VL ! VR) = 3),197

whereas the connection in the opposite direction is weak (w(VR ! VL) = 1). Hence, the bidirectional connections198

are weak (w(VL;VR) = 1). In Figure 1c (iii), the connections in both directions are strong (w(VL ! VR) =199

w(VR ! VL) = 3), resulting in strong bidirectional connections (w(VL;VR) = 3).200
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Measuring inseparability by minimum cut201

Using the strength of the bidirectional connections between the two parts of a network defined above, we define

a minimum cut (min-cut). As mentioned earlier, a core is a subnetwork that cannot be separated because of its

strong bidirectional connections. In other words, a core cannot be cut into two parts without losing many strong

edges regardless of how it is cut. To measure such inseparability, we consider the bipartitioning of a network for

which the strength of bidirectional connections is the minimum among those for all possible bipartitions—the

min-cut. Mathematically, a min-cut (V mc

L
, V

mc

R
) is defined as

(V mc

L , V
mc

R ) = arg min
(VL,VR)2PV

w(VL;VR), (9)

where PV denotes the set of all bipartitions of V . We refer to the strength of bidirectional connections for a

min-cut as “min-cut weight.” We denote the min-cut weight of a min-cut (V mc

L
, V

mc

R
) of graph G as

w
mc

G := w(V mc

L ;V mc

R ). (10)

Based on the definition of a min-cut weight, because two parts of a network G given by any bipartition are202

connected with a strength greater than or equal to its min-cut weight w
mc

G , wmc

G can be taken to represent the203

network’s inseparability.204

Definition of cores: Complexes205

Finally, we introduce the definition of a core (Kitazono et al., 2020; Kitazono et al., 2023). To formally define206

the cores, we must introduce the concept of an induced subgraph. Let G be a graph consisting of a node set V207

and an edge set E and let S ✓ V be a subset of nodes. Then, an induced subgraph G[S] is a graph that consists208

of all the nodes in S and all the edges that connect the nodes in S. The weight of the minimum cut of G[S] is209

denoted by w
mc

G[S]. We are now ready to define the complexes as follows.210

Definition 1 (Complex). An induced subgraph G[S] (S ✓ V ) is called a complex if it satisfies w
mc

G[S] > 0 and211

w
mc

G[S] > w
mc

G[T ]
for any subset T that is a superset of S (T � S and T ✓ V ).212

The definition of complexes is shown schematically in Fig. 1d, wherein we consider the induced subgraphs213

of graph G that comprises ten nodes {A,B, . . . , J}. An induced subgraph G[{E,F, I, J}] is a complex because214

its w
mc is greater than that of any induced subgraph of G that is its supergraph (e.g., G[{B,E, F, I, J}] and215

G[{D,E, F,H, I, J}]). The whole graph G is a complex if it satisfies wmc

G > 0 by definition. We define wmc = 0 for216
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single nodes because we cannot consider partitions of a single node. Therefore, single nodes cannot be complexes.217

If we identify complexes by exhaustive search, the computational time increases exponentially with the218

number of nodes. However, the algorithm proposed by Kitazono et al. (Kitazono et al., 2023) reduces the time219

complexity of the search to polynomial order (Kitazono et al., 2018; Kitazono et al., 2020; Kitazono et al., 2023),220

which allows complexes to be extracted even from large networks.221

Coreness222

To quantify the strength of the bidirectional connections of the cores wherein each node is included, we measured

the “coreness” of each node that we defined using the complexes and their w
mc. A node that is included in

complexes with a high w
mc has high coreness; conversely, a node that is included only in complexes with low w

mc

has low coreness. Specifically, we defined the coreness of a node v as kv if the node v is included in a complex

with w
mc = kv but not included in any complex with w

mc
> kv. Equivalently, we can define the coreness of a

node v as the largest of the w
mc of all complexes containing the node v:

kv = max
C2Gcomplex|v2V (C)

w
mc

C , (11)

where Gcomplex denotes the set of all complexes in the graph G and V (C) denotes the set of all nodes in the

complex C. The coreness Eq. (11) is equal to the largest of the w
mc of all subnetworks containing node v

(Kitazono et al., 2023)

kv = max
S|v2V (S)

w
mc

G[S]. (12)

Herein, to investigate the common tendencies of cores across the conditions of the resting state and seven223

tasks, we normalized coreness by dividing it by the maximum coreness among all nodes for each brain state;224

then, we averaged these values across all eight brain states. Here, we treated the average of the coreness of Rest225

1 and that of Rest 2 as the ‘coreness for Rest.’ It should be noted that the coreness for Rest 1 and Rest 2 were226

consistent (Extended Data Figure 2-2a). In the remainder of this paper, “coreness” refers to this averaged value227

across the conditions.228

Unique characteristics of our core extraction method229

Our core extraction method has three essential di↵erences —bidirectionality, globality, and exactness—when230

compared to a wide range of existing core extraction methods.231

Bidirectionality: The first di↵erence is that our method is specifically designed to extract cores that are232
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densely bidirectionally connected. To the best of our knowledge, no previous studies have extracted network233

cores with dense bidirectional connections from brain networks, except for our own study, which analyzed the234

structural connectome of the mouse brain (Kitazono et al., 2023). We will illustrate how this feature of our235

method can lead to the di↵erences in extracted cores, particularly by comparing it with s-core decomposition, a236

representative core extraction method that generalizes the widely used k-core decomposition. To do this, consider237

the network W shown in Extended Data Fig. 1-1a,b, which is the same as the one shown in Fig. 1d. In this238

case, our method extracts only the bidirectionally connected subnetwork (a node set {EFIJ}) as the most central239

core (Extended Data Fig. 1-1a), whereas s-core decomposition extracts a network (a node set {CDEFGHIJ})240

that includes unidirectionally connected nodes (e.g., nodes C, D, G, H) as the most central core (Extended Data241

Fig. 1-1b).242

Globality: The second distinction is that our method extracts cores by considering the global structure243

of a network, taking into account whether nodes are interconnected across the entire network, whereas many244

existing approaches extract cores based on local metrics and cannot account for such network-wide connectivity.245

Existing core extraction methods, such as degree centrality, network hubs, clustering coe�cients, k-core/s-core246

decomposition explore cores based on local metrics. Specifically, degree centrality, network hubs, and k-core/s-247

core decomposition assess cores by focusing on the degree of individual nodes, while clustering coe�cients evaluate248

the connectivity within the local neighborhoods of nodes. Although these approaches e↵ectively capture local249

structural properties, they do not consider the global structure of the entire network. In contrast, our method250

identifies cores by taking into account the global structure of the entire network. One example illustrating this251

di↵erence is the case where a network consists of two modules (Extended Data Fig. 1-1c, d). There are two252

modules, each consisting of three nodes, A, B, C, and D, E, F. The modules are connected via one node in253

each module. In this setting, when considering the global structure, it is natural to expect that two cores ABC254

and DEF would be extracted. Indeed, in such cases, our method identifies the two sub-networks as the most255

central cores (Extended Data Fig. 1-1c). On the other hand, other existing core extraction methods such as256

k-core/s-core decomposition would identify nearly the entire network as the most central core (Extended Data257

Fig. 1-1d).258

Exactness: The final distinct feature of our method is the exactness of core extraction, whereas other methods259

are based on approximation. In general, when core extraction methods need to solve a combinatorial optimization260

problem to find the best set of nodes, the computational time grows exponentially, making it infeasible to explore261

cores in a realistic amount of time. Therefore, for other core extraction methods that solve such optimization262

problems, it is generally necessary to approximate core extraction particularly in the case of large network263
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sizes (e.g., modularity maximization (Newman and Girvan, 2004; Newman, 2006; Newman, 2012), participation264

coe�cients (Guimerà and Nunes Amaral, 2005) (which depend on the modularity-based partition), the clique265

percolation method (Palla et al., 2005; Derényi et al., 2005), or the functional rich club (Deco et al., 2021). For266

example, performing an exhaustive search for modularity maximization becomes computationally intractable as267

network size increases, necessitating the use of heuristic or approximate methods, such as the Louvain method268

(Blondel et al., 2008). By contrast, although our method also solves optimization problems in the process of269

core extraction, it achieves fast and exact core extraction even from large networks by leveraging an algorithm270

grounded in the mathematical properties of submodularity and monotonicity (Kitazono et al., 2023).271

Cortical and subcortical rendering272

For visualization, the coreness of each ROI was assigned to the cortical surface and the subcortical volume map as273

follows. First, the coreness of the cerebral cortex was assigned to the fsLR-32k CIFTI space using the parcellation274

label defined by ref. (Schaefer et al., 2018). The resulting map was then displayed on the “fsaverage” inflated275

cortical surface by Connectome Workbench (Marcus et al., 2011). For the subcortex, the coreness was assigned276

to the MNI152 nonlinear 6th-generation space by using the parcellation label from ref. (Tian et al., 2020). The277

resulting map was then plotted using nilearn (https://nilearn.github.io/).278

Cortical and subcortical major divisions279

To analyze the variability in the coreness of ROIs in the cerebral cortex from a cognitive functional perspective, we280

used the brain atlas developed by Yeo et al. (Yeo et al., 2011), which divides a functional brain network within281

the cerebral cortex into seven major subnetworks. Each ROI was assigned to one of the seven subnetworks282

(Schaefer et al., 2018), specifically as: default mode, control, limbic, salience/ventral attention, dorsal attention,283

somatomotor, and visual networks.284

Similarly, the subcortical ROIs were classified according to the Melbourne subcortical atlas (Tian et al., 2020).285

Each ROI was assigned to one of the seven areas: the hippocampus, amygdala, thalamus, nucleus accumbens,286

globus pallidus, putamen, and caudate nucleus.287

Comparison of coreness and mean response rates for intracranial electrical stimulation288

In this study, we used the mean response rate (MRR) for intracranial electrical stimulation (iES), which is289

obtained in ref (Fox et al., 2020). The data of ref (Fox et al., 2020) were approved by the Stanford University290

Institutional Review Board, and the subjects consisted of 67 patients (28 female, mean age ± s.d. = 35.4 ±291
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12.7 years) selected from a pool of 119 patients admitted to Stanford Hospital for intracranial EEG (iEEG)292

monitoring of medically refractory epilepsy between 2008 and 2018. Patients were only excluded based on the293

purely practical considerations, such as the lack of iES sessions, high-quality computed tomography scans, or294

adequate electrodes covering the cortical gray matter.295

In the study of ref (Fox et al., 2020), patients were implanted with either subdural grid/strip electrode arrays296

(n=53), depth electrodes (stereo-EEG; n=11), or a combination of both (n=3), resulting in a total of 1,476297

subdural electrodes and 61 depth electrodes. To ensure precise electrode localization, postoperative CT scans298

were aligned with preoperative MRI scans and electrodes were linearly projected onto the cortical surface. The299

standard intrinsic brain network maps (Yeo et al., 2011) encompass only the cortical surface; thus, their analysis300

incorporated only cortical surface data, excluding subcortical regions. Additionally, although the hippocampus301

and insula are considered cortical structures, they were excluded due to the complexity of transformation and302

the potential for seizure induction in these areas.303

The mean response rate for iES was obtained as follows: Electrical stimulation was administered to each304

stimulation site via electrodes. Subjects were then asked to report whether they felt any change in their percep-305

tions, including tactile, visual, emotional perceptions, or motor movement. Electrodes were classified as either306

“responsive” or “silent” based on the subject’s feedback. Data from 119 subjects were aggregated, and the MRR307

was calculated for each of the subnetworks of Yeo-17 (or -7) network atlas (Yeo et al., 2011) as the proportion308

of responsive electrodes compared to all electrodes within each subnetwork. We rendered the MRR for the 17309

subnetworks (Fox et al., 2020) on the brain surface in Fig. 3a and that for the seven networks in Extended Data310

Fig. 5-1a. For a comprehensive explanation of the methodology, refer to ref. (Fox et al., 2020).311

It is important to note that the term ‘perceptual awareness’ in this study refers to the cognitive aspect of312

whether perceptual changes induced by iES are recognized, and the scope of this ‘perceptual awareness’ is limited313

to the types of perceptions elicited. Specifically, the perceptions induced by iES are classified into eight types,314

as follows: (1) somatomotor e↵ects, (2) visual e↵ects, (3) olfactory e↵ects, (4) vestibular e↵ects, (5) emotional315

e↵ects, (6) language e↵ects, (7) memory recall, and (8) physiological and interoceptive e↵ects (for more details,316

please see ref. (Fox et al., 2020)).317

To compare coreness with the MRR (Fig. 3c and Extended Data Fig. 3-1c), we first calculated the average318

coreness of the ROIs within each subnetwork of the Yeo-17 network atlas, according to the ROI assignment to319

each subnetwork by Schaefer et al. (Schaefer et al., 2018), and compared the two metrics. However, prior to this320

comparison, a minor adjustment to the MRR was necessary owing to the slight di↵erences in voxel allocation to321

subnetworks between the original Yeo-17 network atlas and Schaefer’s assignment. We projected the MRR onto322
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the brain surface voxels as per the original Yeo-17 network atlas and then recalculated the averages according323

to Schaefer’s assignment (for details on the calculation method for statistical significance of correlations, see the324

“Statistical Analysis” section).325

NeuroSynth term-based meta-analysis326

To investigate whether the functions of ROIs with high and low coreness in the cerebral cortex di↵er, we performed327

a meta-analysis using NeuroSynth—a platform for large-scale automated meta-analysis of fMRI data (www.ne328

urosynth.org) (Yarkoni et al., 2011). We investigated how the degree of association between ROIs and topics329

that represent cognitive functions vary depending on their coreness as follows. First, we divided the 200 cerebral330

cortical ROIs into 20 groups according to coreness intervals of 0.05 (0–0.05 to 0.95–1) and, based on which331

interval respective ROIs belonged to, we classified them into one of these 20 divisions.332

Next, for ROIs in each interval, we calculated the association with specific terms as follows (Yarkoni et al.,333

2011). We first calculated the average value of the “association test” meta-analytic maps provided by Neurosynth334

(Yarkoni et al., 2011) for the ROIs in each interval. These “association test” maps comprise z-scores obtained335

from a two-way ANOVA that tests for non-zero associations between voxel activation and the use of a specific336

term in an article. For example, a large positive z-score for a voxel i in the association test map for the term337

“reward” implies that compared to studies without the term, those with the term in the title or abstract are338

more likely to report activation of the voxel i. By calculating the average of these z-scores for all voxels of ROIs339

in each interval for every term, we obtain a vector X with the dimension of the number of terms that represents340

the association between the ROIs in the interval and the terms. The voxels were assigned to ROIs by the NIFTI341

format parcellation label defined in the FSL MNI152 2mm space by Schaefer et al. (Schaefer et al., 2018).342

Finally, we evaluated the association of the ROIs in each interval with a specific topic by calculating the343

Pearson correlation r between this vector X and a vector Y , which is a binary vector assigned for each topic with344

the dimension of the number of terms, and indicates whether each topic involves the terms. The list of topics345

and terms, and which term each topic involves, were based on the data available at https://github.com/Neuro346

anatomyAndConnectivity/gradient_analysis/blob/master/gradient_data/neurosynth/v3-topics-50-k347

eys.txt. The number of topics was 50, of which we used 44 topics for analysis, after excluding six topics that348

did not capture any consistent cognitive functions following ref. (Margulies et al., 2016). The topic terms (e.g.,349

“eye movements,” “cued attention,” and “emotion”) that represent the topics were set according to Margulies et350

al. (Margulies et al., 2016). Fisher’s z-score, obtained by Fisher’s z-transformation of the correlation r between351

the vectors X and Y , was used as the degree of association between each topic and ROIs in the interval. For352
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more information see https://neurosynth.org and ref. (Yarkoni et al., 2011).353

We calculated Fisher’s z-score for all intervals and all topics. Subsequently, for visualization, we sorted the354

topics based on the weighted average of the coreness of intervals by using Fisher’s z-score as the weight, wherein355

topics related to high- and low-coreness ROIs were placed at the top and bottom, respectively. Any topic that did356

not reach a significant threshold of z > 3.1 in any interval was excluded; thus, only the remaining 24 topics were357

displayed (Fig. 4). Therefore, while the range of cognitive functions specified by the term ‘cognition’ in this study358

is limited to these 24 topics, it should be noted that these topics cover a range from lower-order sensorimotor359

functions (e.g., motor, eye movement, visual perception, and auditory processing) to higher-order cognitive360

functions (e.g., social cognition, verbal semantics, and autobiographical memory). The analysis was performed361

using a modified code available at https://github.com/NeuroanatomyAndConnectivity/gradient_analysis.362

Comparison of the functional connectivity gradient and coreness363

A functional connectivity gradient refers to the spatial variation in functional connectivity patterns across364

di↵erent brain regions (Margulies et al., 2016; Müller et al., 2020; Shafiei et al., 2020; Fornito et al., 2019).365

Mathematically, a functional connectivity gradient is obtained through an embedding of a functional network366

into a low-dimensional space. Previous studies have shown that functional connectivity gradients are associ-367

ated with numerous neuroscientific features (Margulies et al., 2016; Müller et al., 2020; Shafiei et al., 2020;368

Fornito et al., 2019), including molecular, cellular, anatomical, and functional aspects, indicating that these gra-369

dients capture essential properties of the brain’s functional organization. Among those functional connectivity370

gradients, in this study, we utilized the one for the entire human cerebral cortex developed by Margulies et al.371

(Margulies et al., 2016), which was obtained by the following procedures: A functional connectivity matrix was372

first obtained by calculating the correlation between all pairs of gray coordinates from resting-state fMRI data.373

Next, a nonlinear dimensionality-reduction technique called di↵usion embedding (Coifman et al., 2005) was ap-374

plied to this connectivity matrix. The functional connectivity gradient was defined as the first component in the375

embedding space, which accounts for the greatest variance in the connectivity patterns. Margulies et al. have376

demonstrated that the functional connectivity gradient corresponds to a cortical spatial gradient of the degree of377

abstraction and integration in processing, ranging from the primary sensory/motor cortex to transmodal areas378

(Margulies et al., 2016). The detailed methodology for calculating the functional connectivity gradient has been379

described in ref. (Margulies et al., 2016). Data of the functional connectivity gradient are publicly available at380

https://github.com/NeuroanatomyAndConnectivity/gradient_analysis. For our analysis, we averaged381

the functional connectivity gradient for the voxels in each ROI, and these averaged values were then used for the382
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scatterplot in Fig. 5c (for details on the calculation method for statistical significance of correlations, see the383

“Statistical Analysis” subsection).384

It should be noted that the sign of the gradient is reversed from that in Margulies et al.’s paper but matches385

that of the gradient data available at the repository. This di↵erence arises because the sign of the functional386

connectivity gradient is arbitrary and carries no particular meaning. In di↵usion embeddings, each axis’s sign387

does not convey specific information due to the nature of the eigenvectors used in constructing the embedding. In388

this context, eigenvectors are determined only up to a sign, meaning that each axis can be flipped independently389

without altering the structure of the embedding.390

Extraction of cores regardless of bidirectionality391

To assess the impact of incorporating the bidirectionality of connections on the results, we extracted cores when

bidirectionality was ignored. Instead of using Eq. (8), which defines the measure of bidirectional connection

strength, we used a simpler measure: we summed the weights of all edges that connect two parts, regardless of

their directions:

wsimple sum (VL;VR) =
1

2

X

e2E(VL!VR)[E(VR!VL)

we (13)

Here, the factor of 2 in the denominator is to maintain consistency with the case wherein bidirectionality is392

considered. The use of this connection strength Eq. (13) is equivalent to applying the bidirectional connection393

strength Eq. (8) to an undirected network, which is obtained by ignoring edge directions and is equivalently394

achieved by setting its connection matrix to W
0 = (W + W

>)/2, where W is the connection matrix of the395

original directed network (Kitazono et al., 2023).396

Weighted degree of nodes397

The weighted degree deg(v) of a node v is defined as the sum of the weights of all edges connected to the node

v, regardless of the edge directions:

deg(v) =
X

e2E({v}!V )[E(V!{v})

we. (14)

To investigate the common tendencies of node degree across the conditions of the resting state and seven tasks,398

we normalized weighted degree of nodes in the same way as we normalized coreness: by dividing it by the399

maximum degree among all nodes for each brain state and then averaging these values across all brain states.400

In the remainder of this paper, “weighted degree” refers to this averaged value across the conditions.401
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Statistical Analysis402

Comparison of Coreness Between Cortical and Subcortical Regions We performed a one-way ANOVA403

to compare the coreness between cortical and subcortical regions to examine the di↵erences between cortical and404

subcortical networks (Fig. 2b, Fig. 6b).405

Principles of statistical analysis in comparing coreness with other metrics Given that our comparisons406

of coreness with the functional gradient and the MRR for iES are exploratory rather than hypothesis-driven, and407

considering the recommendation against interpreting results solely based on p-values (Wasserstein and Lazar,408

2016), we avoid a dichotomous judgment of the significance of results based on p-values alone. Instead, we409

report all relevant information, such as 95% confidence intervals and central 95% interval of the null distribution410

based on brainSMASH to provide readers with a more comprehensive and accurate interpretation of the results.411

Similarly, for regression analyses, we provide 95% confidence intervals. The details of the statistical analyses are412

described in the following paragraphs.413

Calculation of confidence intervals for correlations To calculate the 95% CIs, we used the bias-corrected414

and accelerated percentile (BCa) bootstrap method (Efron and Tibshirani, 1994), with 10,000 bootstrap samples.415

Calculation of p-values for Correlation Analysis Simple statistical analyses for the Pearson correlations416

may result in false positives due to spatial autocorrelation in brain maps. Therefore, we used brainSMASH417

toolbox (Burt et al., 2020) to generate null maps that consider spatial autocorrelation in cortical regions, in418

order to test the significance of the correlations between the coreness map and either the iES map or Margulies419

maps. We generated 10,000 surrogate maps and constructed the null distribution of correlations by calculating420

the correlations between the empirical data (the mean response rate for iES or the functional connectivity421

gradient) and these surrogate maps. From this null distribution, we defined the central 95% interval of the null422

distribution as the range between the 2.5% and 97.5% percentiles. For the comparison with the iES map, we423

averaged the surrogate map values within each partition of the 17 Yeo network (or 7 Yeo network) and obtained424

the null distribution of correlation values for the surrogate data map. Then, we calculated p-values (referred to425

as pbrainSMASH) based on where the empirical correlation value fell within the null distribution.426

Calculation of the confidence intervals for the regression line In the scatter plots of coreness with either427

mean response rates for iES or functional connectivity gradient, the 95% confidence interval for the regression428

line was calculated using the following formula: ŷ ± T0.975 ⇥ serr ⇥
q

1

n + (x�x̄)2Pn
i=1(xi�x̄)2 where ŷ is the predicted429
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value on the regression line, T0.975 is the 97.5th percentile of the Student’s t-distribution with n � 2 degrees of430

freedom, serr is the standard error of the residuals, n is the sample size, x is the explanatory variable, and x̄ is431

the mean of x.432

Data and code availability433

The neuroimaging data are freely available from HCP https://db.humanconnectome.org/. Parcellation labels434

were used from https://github.com/ThomasYeoLab/CBIG (for the cerebral cortex) and https://github.com435

/yetianmed/subcortex (for the subcortex). The MATLAB codes for extracting bidirectionally connected cores436

are available at https://github.com/JunKitazono/BidirectionallyConnectedCores. The estimation of the437

VAR model was performed using the MVGC toolbox (Version 1.2) https://github.com/SacklerCentre/MVGC1.438

Normalized directed transfer entropy (NDTE) was calculated using a modified version of the codes at https://gi439

thub.com/gustavodeco/nhb-ndte. For the visualization of regions within the cerebral cortex and subcortex, the440

connectome workbench https://www.humanconnectome.org/software/connectome-workbench and nilearn441

https://github.com/nilearn/nilearn, respectively, were used. For the neurosynth meta-analysis, we used a442

modified version of the codes at https://github.com/NeuroanatomyAndConnectivity/gradient_analysis.443

Violin plots were drawn using the codes at https://github.com/bastibe/Violinplot-Matlab.444
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Results445

Framework for extracting bidirectionally interacting cores from a directed functional net-446

work447

This section outlines a novel framework that has been proposed in this paper for extracting the cores of brain448

networks, with strong bidirectional interactions from brain activity data. The framework consists of two steps.449

First, the strength of statistical causal influence between brain regions is estimated from brain activity to con-450

struct a whole-brain-directed functional network. Second, strongly bidirectional cores are extracted from the451

network.452

In the first step, we quantify the strength of statistical causal influence from one ROI to another using fMRI453

data (Fig. 1a). This quantification is performed for every possible combination of ROIs, enabling us to construct454

a whole-brain directed network (Figure 1b) that illustrates the strength of statistical causal influences among455

brain ROIs. To measure these strengths, we used normalized directed transfer entropy (NDTE) (Deco et al.,456

2021)—a statistical method that is designed to estimate the strengths of the statistical causal influence between457

two sets of time-series data. The direction of the arrow in the schematic (Figure 1b) indicates the direction of458

statistical causal influence between ROIs, whereas the thickness of these arrows reflects the magnitude of the459

influence. The methodology for this calculation has been described in the Methods section.460

In the second step, from the constructed directed network, we extract subnetworks with strong bidirectional461

interactions, or the “cores” of a network that are identified using the method proposed by Kitazono et al. (Ki-462

tazono et al., 2023). In their study, a core is termed a “complex” (Kitazono et al., 2023), which is defined as463

a subnetwork that is composed of stronger bidirectional connections than other subnetworks that include it.464

Using the method, the directed network can be hierarchically decomposed into complexes based on the strength465

of bidirectional connections. Here, the strength of bidirectional connections is defined based on a measure that466

quantifies how strongly the 2 divided parts of a network are bidirectionally connected, as shown in Fig. 1c467

(See Methods for details). The complexes extracted from the network in Fig. 1b are shown in Fig. 1e, and an468

example using a toy network is shown in Fig. 1d (See Methods for details).The subnetwork highlighted with a469

yellow background is the complex with the strongest bidirectional connections; the subnetworks distinguished by470

blue and purple backgrounds represent the second-strongest and the weakest complexes, respectively. Generally,471

complexes exhibit a nested structure wherein stronger bidirectional complexes are contained in weaker ones to472

form either unimodal or multimodal hierarchical structures.473

To quantify the strength of the bidirectional connections of the cores wherein each node is included, we use474
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a measure called the “coreness.” We defined the coreness of a node v as the largest of the w
mc of all complexes475

containing the node v (see Methods for details).476

Bidirectional cores in the functional network of the human brain477

In this subsection, we present the results of our analysis of fMRI data from the human connectome project478

(HCP) (Van Essen et al., 2013) using our proposed framework. We assume that if a brain region is consistently479

included in the strongly bidirectional, central cores during the execution of various tasks, those regions are480

crucial for diverse cognitive functions in general. Therefore, to determine which regions are consistently included481

in central cores, we first extracted cores at rest and during seven tasks in the HCP. Next, to explore how regions482

consistently included in the central cores relate to perceptual awareness, we compared coreness with the rates483

of iES-induced perceptual elicitation. Additionally, to further characterize the regions consistently included in484

the central cores, we performed a meta-analysis using NeuroSynth, and compared the cores with the functional485

connectivity gradient.486

Brain regions frequently included in the central cores487

We applied our proposed framework to HCP fMRI data to analyze which brain regions were more likely, on488

average, to be included in the central cores. First, we extracted cores for the resting state and seven tasks489

(Figure 2a, Extended Data Fig. 2-1). Subsequently, we calculated the average coreness over these eight conditions490

(see Methods for details). This average is simply referred to as coreness, hereafter. It should be noted that we491

treated the average of the coreness of Rest 1 and that of Rest 2 as the coreness for resting state, after confirming492

their consistency (Extended Data Figure 2-2a).493

The results revealed that compared to the subcortical regions, cerebral cortical regions tend to have higher494

coreness (F (1, 230) = 115.295, p = 4.59⇥10�22
, ⌘

2 = 0.334; Figs. 2b and 2c). Many ROIs in the cerebral cortex495

display high coreness, whereas all subcortical regions show lower coreness, although they are from diverse areas,496

such as the hippocampus, amygdala, and thalamus. This trend remained broadly consistent even when the graph497

density was varied to 5% and 20% (one-way ANOVA, 5%; F (1, 230) = 71.187, p = 3.64⇥10�15, ⌘2 = 0.236, 20%;498

F (1, 230) = 170.032, p = 1.83 ⇥ 10�29
, ⌘

2 = 0.425, Extended Data Figs. 2-3a and b), indicating the robustness499

of the findings across di↵erent thresholds. This tendency indicates that although bidirectional cores are formed500

within cortical regions, subcortical regions do not directly become part of these cores.501

A more detailed examination within the cerebral cortex revealed that not all ROIs possess high coreness,502

indicating variability in coreness among di↵erent regions (Fig. 2b). To understand this variability in coreness503
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from a cognitive functional perspective, we divided ROIs into seven functional subnetworks according to Yeo’s504

7 network atlas (Yeo et al., 2011) (Fig. 2c). The results showed that ROIs with high coreness were particularly505

located in the salience/ventral attention, dorsal attention, somatomotor, and visual networks. Conversely, ROIs506

in the limbic network exhibited low coreness, and the default mode network and control network included ROIs507

with low coreness.508

Next, to explore the spatial distribution trend of ROIs with particularly high or low coreness within the509

cerebral cortex, we visualized ROIs with a coreness greater than 0.7 and less than 0.3 on the surface of the510

cerebral cortex (Fig. 2d). This visualization used color coding based on the Yeo-7 network atlas. The results511

showed that ROIs with high coreness were mainly located in the somatosensory and motor areas surrounding512

the central sulcus, which are part of the somatomotor and dorsal attention networks, and in the occipital areas,513

which belong to the visual network. Additionally, high-coreness ROIs were identified in the salience network,514

which were relatively dispersed in their locations. On the other hand, low-coreness ROIs were scattered across515

various areas, including the lateral temporal, medial temporal, orbitofrontal, and cingulate cortices. This trend516

was confirmed to remain fundamentally unchanged even when the coreness thresholds were changed (coreness517

> 0.8 and < 0.2, or > 0.6 and < 0.4; Extended Data Fig. 2-3c).518

Comparison of the core structure with the mean response rate for iES519

Next, we investigated whether the coreness of cerebral cortical ROIs, whether high or low, is associated with520

their importance for perceptual awareness. Specifically, we compared the coreness with the rates of iES-induced521

perceptual elicitation (Fox et al., 2020).522

Figure 3a shows the cortical map representing the mean response rate (MRR) for iES. By comparing this map523

of the MRR with the map of coreness (Fig. 3b, the same figure as Fig. 2b is reprinted), similar structures can be524

observed in the two maps—high MRR and coreness are commonly found in the areas such as the somatosensory525

and motor areas surrounding the central sulcus, and in the visual cortex in the occipital region, whereas low526

MRR and coreness are visible in the areas such as the prefrontal, lateral temporal, posterior parietal, and527

posterior cingulate cortices. The scatterplot (Fig. 3c) shows an apparent upward trend between coreness and528

MRR, resulting in a moderate positive correlation r = 0.462. Note, however, that the correlation estimate529

is not statistically robust due to the small sample size (n = 17). The 95% confidence interval (CI) and the530

central 95% interval of the null distribution based on brainSMASH are very wide, [-0.074, 0.755] and [-0.583,531

0.574], respectively, and the corresponding p-value computed from the null distribution is pbrainSMASH = 0.0863.532

A positive correlation was observed not only in the comparison using the Yeo-17 network atlas (Fig. 3c) but533
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also in the comparison using the Yeo-7 network atlas (r = 0.567), although the uncertainty of the correlation534

estimate is even larger because of the smaller sample size (95% CI [-0.994, 0.944], 95% null distribution interval535

(brainSMASH) [-0.800, 0.796], pbrainSMASH = 0.139, n = 7 points, Extended Data Figs. 3-1a, b, c).536

The moderate level of positive correlation between coreness and MRR was also observed even when the graph537

density was changed to 5% and 20%, showing the robustness of the observed trend with resepect to the graph538

density (5% graph density: r = 0.498, 95% CI [0.043, 0.767], 95% null distribution interval (brainSMASH)539

[-0.583, 0.574], pbrainSMASH = 0.0623, n = 17 points; 20% graph density: r = 0.384, 95% CI [-0.176, 0.717], 95%540

null distribution interval (brainSMASH) [-0.544, 0.600], pbrainSMASH = 0.165, n = 17 points; Extended Data541

Figs. 3-1d and 3-1e).542

Term-based meta-analysis of the core structure using NeuroSynth543

To further explore the cognitive functions linked to ROIs with varying levels of coreness, we conducted a term-544

based meta-analysis using NeuroSynth (Yarkoni et al., 2011), which statistically evaluates the association between545

each ROI and cognitive functions in the literature by analyzing information from thousands of published fMRI-546

based studies.547

As an example, we illustrate the results obtained by applying a Fisher’s z-score threshold of 5, chosen548

conservatively to account for multiple comparisons (approximately 500 comparisons in the meta-analysis table).549

Under this criterion, high-coreness ROIs (e.g., coreness � 0.75) are associated with terms such as ‘eye movements,’550

‘numerical cognition,’ ‘visual attention,’ ‘visual perception,’ ‘reading,’ ‘action,’ ‘motor,’ ‘cued attention,’ ‘working551

memory,’ ‘multisensory processing,’ ‘cognitive control,’ ‘visuospatial,’ ‘pain,’ and ‘auditory processing’ (Fig. 4).552

Most of these terms reflect lower-order sensorimotor cognitive functions, although some terms (like ‘reading’,553

‘numerical cognition’, ‘working memory’) may rely on both sensorimotor and higher-order components. In554

contrast, low-coreness ROIs (e.g., coreness  0.25) are associated with terms such as ‘face/a↵ective processing,’555

‘autobiographical memory,’ ‘emotion,’ ‘declarative memory,’ ‘visual semantics,’ ‘pain,’ and ‘motor,’ based on the556

same z-score criterion (Fig. 4). These terms primarily correspond to higher-order cognitive processes, though557

‘pain’ and ‘motor’ are more closely tied to lower-order sensorimotor functions. This trend was similarly observed558

when the graph density was changed to 5% and 20% (Extended Data Figs. 4-1b and 4-1c), and when subcortical559

regions were included (Extended Data Figure 4-1a).560

25

JN
eurosci

 Acce
pted M

an
uscr

ipt



Comparison of the core structure with the functional connectivity gradient561

To further assess the relationship between coreness and lower-order or higher-order functions in the cerebral562

cortex, we compared coreness with the functional connectivity gradient (Margulies et al., 2016), which is a563

low-dimensional embedding of the functional connectivity at rest and accounts for the greatest variance in the564

connectivity patterns. The gradient is known to correspond to a spectrum of the degree of abstraction and565

integration in processing, where its upper end is associated with lower-order sensory processing and the lower566

end with higher-order (abstract and integrative) cognitive functions (Margulies et al., 2016). It should be noted567

that this is the inverse of the gradient described by Margulies et al. (Margulies et al., 2016).568

Therefore, if there exists a relationship where high-coreness and low-coreness ROIs are associated with lower-569

order and higher-order functions, respectively, we would expect the coreness to correlate with the functional570

connectivity gradient. This expectation was confirmed by the comparison of the two (see Fig. 5a and Fig. 5b,571

Fig. 2b reprinted). Regions at one end of the gradient comprise visual, somatosensory/motor, and auditory areas,572

demonstrating partial overlap with regions of high coreness. Similarly, regions at the other end of the gradient573

predominantly comprise default-mode network areas, which show partial overlap with low-coreness regions. This574

relationship is further evidenced in the scatterplot comparing coreness with the functional connectivity gradient575

(Fig. 5c), indicating a statistically robust positive correlation between them (r = 0.397, 95% CI [0.299, 0.478],576

the central 95% interval of the null distribution (brainSMASH) [-0.324, 0.311], pbrainSMASH = 0.00280, n = 200577

points). The positive correlation was also observed even when the graph density was changed to 5% and 20%,578

showing the robustness of the observed trend with resepect to the graph density (5% graph density: r = 0.441,579

95% CI [0.341, 0.527], 95% null distribution interval (brainSMASH)[-0.324, 0.311], pbrainSMASH = 0.00100, n =580

200 points; 20% graph density: r = 0.304, 95% CI [0.207, 0.386], 95% null distribution interval (brainSMASH)581

[-0.304, 0.335], pbrainSMASH = 0.0439, n = 200 points; Extended Data Fig. 5-1a and 5-1b).582

Comparison with the complexes when bidirectionality is ignored583

In this subsection, we explore the importance of considering bidirectionality in findings presented in the previous584

sections. To do so, we examined how cores would change if we only considered the strength of interactions585

while ignoring bidirectionality. Not accounting for bidirectionality equates to the symmetrizing of a network and586

treating it as an undirected network (see Methods for details).587

First, on comparing the broad categories—cortical and subcortical—similar to the observations made when588

considering bidirectionality (Figs. 2b and 2c), cortical regions generally exhibited higher coreness than subcortical589

regions, even in the absence of consideration of bidirectionality (F (1, 230) = 235.492, p = 4.52⇥10�37
, ⌘

2 = 0.506;590
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Figs. 6a and 6b). Next, we examined the di↵erences within the cerebral cortex when considering, versus ignoring,591

bidirectionality. The results showed that although coreness was correlated between the two cases, large di↵erences592

were observed in certain regions (Fig. 6c); specifically, in regions with low or medium coreness when considering593

bidirectionality, coreness was largely increased by ignoring bidirectionality (see Fig. 6c, highlighted area, and594

Fig. 6d). Thus, there was a change that counteracted the trend in coreness that existed when bidirectionality was595

considered. This suggests that the correlation of coreness with the MRR for iES, as well as with the functional596

connectivity gradient—both observed when considering bidirectionality—weakened when bidirectionality was597

ignored. Indeed, in regions with smaller MRR and the functional connectivity gradient tended to show a greater598

increase in coreness if bidirectionality was ignored (MRR; r = �0.373, 95% confidence interval (CI) [-0.675, 0.080],599

the central 95% interval of the null distribution based on brainSMASH [-0.588, 0.552], pbrainSMASH = 0.148,600

computed on n = 17 points, functional connectivity gradient; r = �0.256, 95% CI [-0.377, -0.125], 95% null601

distribution interval (brainSMASH) [-0.308, 0.278], pbrainSMASH = 0.0560, n = 200 points, Extended Data602

Figs. 6-1a and 6-1b), resulting in a weaker correlation of coreness with the MRR and with the functional603

connectivity gradient (MRR; r = 0.419, 95% CI [-0.139, 0.723], 95% null distribution interval (brainSMASH)604

[-0.536, 0.593], pbrainSMASH = 0.138, n = 17 points, functional connectivity gradient; r = 0.357, 95% CI [0.276,605

0.425], 95% null distribution interval (brainSMASH) [-0.296, 0.324], pbrainSMASH = 0.00990, n = 200 points,606

Extended Data Figs. 6-1c and 6-1d).607

Comparison with other existing methods for extracting cores608

To further assess the importance of considering bidirectionality, we compared our core extraction method using609

complexes with other existing methods that do not consider bidirectionality. Specifically, we conducted compar-610

isons with s-core decomposition (Chatterjee and Sinha, 2007; van den Heuvel and Sporns, 2011; Harriger et al.,611

2012; Crobe et al., 2016) and network hubs (van den Heuvel and Sporns, 2013; Royer et al., 2022).612

First, we undertook a comparison with the s-core decomposition. The s-core decomposition is frequently613

used for extracting subnetworks with strong connections, which are called s-cores, and does not consider the614

bidirectionality of connections (Chatterjee and Sinha, 2007; van den Heuvel and Sporns, 2011; Harriger et al.,615

2012; Crobe et al., 2016). The comparison revealed that the coreness for the complexes when bidirectionality616

is considered and the coreness for s-core decomposition (where coreness can be defined in the same way as the617

complexes. See Methods for details.) were not necessarily equal (Fig. 7a). This indicates that, by considering618

bidirectionality, we can extract core structures that are not identifiable by s-core decomposition. Additionally, the619

coreness for s-cores and that for complexes when bidirectionality is ignored were approximately equal (Fig. 7b).620
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This means that the coreness for s-core decomposition demonstrated a weaker correlation with the MRR for621

iES or the functional connectivity gradient than did the coreness for the complexes when bidirectionality was622

considered.623

Next, we compared with network hubs, which are nodes with a high degree. Here, the weighted degree624

of a node is defined as the sum of the weights of edges that are connected to the node, regardless of their625

directions (Eq. (14)). If strong complexes when bidirectionality is considered basically comprise hubs, this means626

that bidirectionality does not matter for the extraction of complexes. The results show that the coreness when627

bidirectionality was considered did not necessarily comprise hubs. Figure 7c shows that strong complexes include628

not only hubs but also medium-degree nodes, although the weighted degree and the coreness exhibit a certain629

level of correspondence. Similarly, when bidirectionality is ignored, the coreness also shows correspondence with630

the weighted degree. However, there is a di↵erence in that, particularly in regions with lower degrees, the631

weighted degree and coreness tend to match almost one-to-one (Fig. 7d). Additionally, the weighted degree632

demonstrated a weaker correlation with the MRR and the functional connectivity gradient than did the coreness633

when bidirectionality was considered (MRR; r = 0.387 95% confidence interval (CI) [-0.087, 0.678], the central634

95% interval of the null distribution based on brainSMASH [-0.577, 0.577], pbrainSMASH = 0.151, computed on635

n = 17 points, functional connectivity gradient; r = 0.277, 95% CI [0.149, 0.379], 95% null distribution interval636

(brainSMASH) [-0.315, 0.321], pbrainSMASH = 0.0529, n = 200 points, Extended Data Figs. 7-1a and 7-1b).637

These results demonstrate that considering bidirectionality for extracting cores can reveal core structures of638

the human functional network that are unidentifiable when analyzed using simple methods that do not consider639

bidirectionality.640
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Discussion641

In this study, we investigated the subnetworks of the brain that exhibit strong or weak bidirectionality, and642

examined their relationship with perceptual awareness and other cognitive functions. To achieve this, we proposed643

a novel framework for extracting cores (complexes) with strong bidirectional interactions from brain activity644

(Fig. 1). We applied this framework to HCP fMRI data of the resting state and seven cognitive tasks and645

extracted complexes. The analysis revealed the average tendencies of the regions included in the cores with646

strong and weak bidirectionality across di↵erent brain states, and how these are characterized in relation to647

perceptual awareness and other cognitive functions (Figs. 2–5). Regarding the relationship with perceptual648

awareness, cerebral cortical regions were more likely to be included in the strongly bidirectional cores whereas649

subcortical regions were less likely to be included (Fig. 2). Specifically within the cerebral cortex, there was a650

moderate positive correlation (r = 0.462) between iES-induced perceptual elicitation rates and the likelihood of651

being included in the strongly bidirectional cores (Fig. 3), but the relationship is not statistically robust according652

to the 95% confidence interval and the p-value (95% confidence interval [-0.074, 0.755], central 95% interval of the653

null distribution [-0.583, 0.574], pbrainSMASH = 0.0863). It is important to note that the uncertainty is inherently654

large due to the small sample size of only n = 17 points. To pass the conventional threshold of p-value < 0.05,655

the correlation would have to be greater than r = 0.574, which is a considerably large correlation and generally656

di�cult to achieve empirically. Additionally, the p-value obtained with brainSMASH is conservative because it657

preserves spatial autocorrelation. Taken together, although we cannot definitively conclude that there is a clear658

association due to the limited small sample size, we interpret the result of the positive correlation r = 0.462 as659

a non-negligible and moderate e↵ect.660

Regarding the relationship with other cognitive functions, a meta-analysis and a comparison with the func-661

tional connectivity gradient revealed that cores with stronger bidirectionality tended to be associated with lower-662

order, rather than higher-order, cognitive functions (Figs. 4 and 5) (the correlation r = 0.397). It is worth663

noting that although the results with the functional gradient are statistically more robust (95% CI [0.299, 0.478],664

pbrainSMASH = 0.00280) than those with the mean response rate for iES, they are obtained based on a much665

larger sample size (n = 200) and thus, it is generally much easier to obtain a smaller p-value simply due to the666

larger sample size.667

In the following subsections, we first explain the network structure revealed in this study using our framework668

for extracting subnetworks with strong bidirectional interactions. We then examine the relationship of cores that669

exhibit strong bidirectional interactions with conscious perception. Based on the results of this study, we argue670
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that the regions with strong bidirectional interactions broadly correspond to regions considered important for671

conscious perception, although this relationship involves some uncertainty due to the small sample size. Subse-672

quently, we discuss the underlying mechanisms of the observed potential correspondence between iES-induced673

perceptual elicitation rates and the strength of bidirectional interactions. Next, we discuss the interpretation of674

our findings suggesting that regions associated with lower-order sensorimotor processing belong more to strongly675

bidirectional cores compared to regions in the association cortices, which are known for their role in higher cog-676

nitive functions. Additionally, we contextualize our results by comparing the extracted cores with existing core677

extraction methods from a network analysis perspective. Finally, we discuss future prospects for applications of678

our proposed framework.679

The network structure revealed in this study680

Our findings revealed that while cortical regions exhibit high coreness, subcortical regions show relatively lower681

coreness. This result suggests that, although strong bidirectional cores are formed within cortical regions, sub-682

cortical regions are not directly incorporated into these cores. A primary factor contributing to this phenomenon683

is the relatively weaker statistical causal strength within subcortical regions and between subcortical and cortical684

regions , as illustrated in the constructed directed graph (Extended Data Fig. 2-1a).685

Correspondence between the strength of bidirectional interactions and the significance for686

conscious perception687

In this subsection, we discuss a potential link between a region’s inclusion in the central cores and its importance688

for conscious perception. This argument is supported by two key findings: firstly, cortical regions are identified as689

more likely to be included in central cores than subcortical ones (Fig. 2). Secondly, there is a moderate positive690

correlation between the coreness and the iES-induced perceptual elicitation rates, although this finding is not691

statistically robust due to the small sample size. (Fig. 3).692

Regarding the first finding, while the tendency for cortical regions to show higher coreness likely reflects693

the importance of the cerebral cortex in conscious perception, the interpretation of the tendency for subcortical694

regions to show lower coreness remains less clear. The significance of the cerebral cortex in conscious perception695

has been well-established through previous research (Koch et al., 2016; Lamme, 2018; Mashour et al., 2020;696

Marshel et al., 2019; Filipchuk et al., 2022). Therefore, it can be said that the observation that cortical regions697

tend to be included in the central cores (i.e., exhibit higher coreness) aligns with this significance. On the other698

hand, while some studies argue that subcortical regions play a less direct role in conscious perception (Koch et al.,699
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2016; Lamme, 2018; Mashour et al., 2020), others claim they are necessary (e.g., (Aru et al., 2019; Ward, 2011;700

Slagter et al., 2017; Afrasiabi et al., 2021), brainstem; (Edlow et al., 2024), thalamus; (Whyte et al., 2024)).701

Therefore, further careful research is necessary to determine whether the lower coreness observed in subcortical702

regions corresponds to the actual contribution of subcortical regions to conscious experience.703

Regarding the second finding, the relationship between iES-induced perceptual elicitation rates and regions704

with high coreness suggests that these core areas may play an important role in conscious perception. iES allows705

for the causal modulation of neural activity, indicating that stimulation of a specific region leading to changes706

in conscious perception demonstrates the direct involvement of that region in that perception (Raccah et al.,707

2021). Therefore, the observed correlation between coreness and perceptual elicitation rates implies that central708

core regions within the cerebral cortex may be important for conscious perception.709

Nevertheless, this comparison must be interpreted with caution due to several limitations. iES can also induce710

motor responses, raising the possibility that changes in conscious perception may result from awareness of the711

induced movement rather than the direct involvement of the stimulated region. Additionally, it is important712

to recognize that this comparison is restricted to brain regions responsible for perceptual awareness within the713

range of perceptual categories elicited by iES experiments (see Methods for details).714

Overall, while the findings suggest a potential link between regions included in the bidirectional cores and715

their importance for conscious perception, we cannot draw definitive conclusions due to the various factors716

mentioned above. Further research is needed to clarify the relationship between strongly bidirectional cores and717

conscious perception.718

Interpretation of the mechanism behind the high elicitation rates induced by iES for regions719

within cores720

Below, we discuss the underlying mechanism behind a potential positive correlation between high elicitation rates721

induced by iES for regions and strongly bidirectional cores. As regions within a core are strongly connected to722

other regions within the core, it is expected that stimulating a region within the core will propagate its e↵ects723

throughout the core, and thereby result in a change in conscious perception. Our results do not contradict this724

expected mechanism, supporting the observed general tendency for the high elicitation rates induced by iES for725

regions within cores. On the other hand, it is also expected that even when a region outside a core is stimulated,726

if the region provides input to the core, the e↵ect of the stimulus could propagate to the core, and thus result in727

a change in perception. However, our results showed that the perceptual elicitation rates in regions not included728

in the strongly bidirectional core were generally low (Fig. 3, Extended Data Figs. 6-1). This indicates that when729
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a region that causally a↵ects the core, that is, provides input to the core, is stimulated, there tends to be a lower730

tendency to induce changes in perception. Whether a perceptual change occurs when a region outside the core is731

stimulated depends on factors such as the intensity of the stimulation. Even when stimulating non-core regions732

that provide input to the core, perceptual change could occur if the stimulus intensity is strong enough.733

To validate this interpretation in the future, it will be crucial to monitor the extent and manner in which the734

signal propagates bidirectionally upon stimulation. Additionally, it will be important to determine whether the735

resulting perception aligns with the perception associated with the region to which the signal has propagated.736

This will involve adjusting the intensity of the stimulation and correlating it with the outcomes of extracted737

cores. Such analysis requires measurement techniques with high temporal resolution that are capable of capturing738

signal propagation and perceptual changes within a timeframe of milliseconds to a few seconds. However, the739

temporal resolution of fMRI exceeds this timeframe, being longer than a few seconds (Glover, 2011). Therefore,740

incorporating EEG or ECoG data in future studies could be beneficial, o↵ering higher temporal resolution741

than fMRI. These methods enable the capturing of rapid signal dynamics and perception changes, e↵ectively742

complementing fMRI’s spatial insights.743

Correspondence of the strength of bidirectional interactions with other cognitive functions744

In this study, a meta-analysis using NeuroSynth and a comparison with the functional connectivity gradient745

revealed that cores with strong bidirectional interactions tended to include regions associated with lower-order746

sensorimotor functions rather than regions associated with higher-order cognitive functions. This section eluci-747

dates the implications of these findings and explores potential explanations for these observations.748

The results in this paper suggest that lower-order regions form cores in which they interact with each other in749

a bidirectional manner, whereas other regions have weak bidirectional interactions with those cores. Lower-order750

sensory processing regions are the first in the cortex to receive stimuli from the outside world and play a fun-751

damental role in sending signals to higher-order regions. Lower-order regions also receive top-down signals from752

higher-order regions. This suggests that lower-order regions function as the cores of multidirectional information753

flow by coordinating with each other.754

Next, we discuss the factors that led to the result that lower-order regions form cores with strong bidirectional755

interactions. The simplest, albeit näıve, interpretation is that this result is due to di↵erences in the strength of756

bidirectional interactions. That is, the interpretation is that the bidirectional interactions are stronger between757

lower-order regions, while such interactions are weaker between lower-order and higher-order regions and between758

higher-order regions by comparison.759
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Another interpretation is that the present results were obtained because bidirectional interactions universally760

occur in lower-order regions, but whether such interactions occur between lower- and higher-order regions depends761

on many factors, including attention (Gregoriou et al., 2009; Baldauf and Desimone, 2014) and strength of sensory762

stimuli (van Vugt et al., 2018). It should also be noted that this study analyzed average trends across resting and763

seven di↵erent task states (Van Essen et al., 2013; Barch et al., 2013). It is possible that in lower-order regions,764

task-independent bidirectional interactions occur, while in higher-order regions, they may be task-dependent.765

To better understand the relationship between cognitive functions and bidirectional interactions, it will be766

important to analyze data that takes into account the abovementioned factors, as well as a more detailed analysis767

of task-specific brain states.768

Comparison with other core extraction methods in terms of association with cognitive769

functions770

In this research, we evaluated our proposed methodology against traditional core extraction techniques, namely771

s-core decomposition and network hubs, which do not consider bidirectionality (Fig. 7). In what follows, we772

compare these methods in the context of their association with cognitive functions.773

Our findings revealed an association between the coreness of our method and two key metrics: the MRR of774

iES and the functional connectivity gradient. Conversely, the s-cores and hubs demonstrated a weaker correlation775

with these metrics. This suggests that our approach can unveil connections between network cores and cognitive776

functions that remain undetected by conventional methods due to their non-consideration of bidirectionality.777

Unlike our study, previous research utilizing s-core decomposition and network hubs have identified central778

cores or hubs primarily identified network cores within higher-order regions (Achard et al., 2006; Achard and779

Bullmore, 2007; Buckner et al., 2009). In contrast, our study revealed that the central cores and hubs were780

primarily situated in lower-order regions. This divergence likely stems from our approach of employing normalized781

directed transfer entropy (NDTE, (Deco et al., 2021)) as an edge weighting metric. NDTE captures the directional782

and statistical causal relationships within the network, unlike previous studies that relied on correlations as783

edge weights, ignoring the directionality or statistical causality of interactions. This methodological di↵erence784

elucidates the distinct outcomes between our findings and those of previous research, highlighting the significance785

of considering directionality in network analysis.786

In summary, our research underscores the value of incorporating directionality based on estimated directed787

influences in network analysis. Through this innovative approach, we have established a new link between network788

cores with strong bidirectional interactions and crucial neurological metrics, namely the MRR and the functional789
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connectivity gradient, enhancing our understanding of the relationship between the brain network structure and790

its functions.791

Distinguishing features of our framework compared to research proposing the adopted graph792

construction method793

From the perspective of core extraction for directed networks, our framework for extracting cores in brain-directed794

networks has unique characteristics in both the methodology for core extraction and the regions identified as795

cores. However, it is worth mentioning that our framework adopts the graph construction method used by Deco796

et al. (Deco et al., 2021), indicating that our framework does not introduce novelty in the graph construction797

process. Instead, the extraction of bidirectional cores serves as a key element that characterizes our framework.798

Notably, while they also extract core regions from directed networks, their approach di↵ers from ours. Of course,799

in addition to the fundamental di↵erences in research objectives between our study and theirs, the analyses, such800

as the comparison of coreness with iES or functional gradients, are also decisively di↵erent. Along with these801

fundamental di↵erences, the methodologies and regions extracted as cores di↵er between the two studies. Given802

that both studies share the same graph construction method but adopt di↵erent core extraction techniques, the803

di↵erences in core extraction methodology and extracted regions can be regarded as elements that characterize804

our framework from the perspective of core extraction. Therefore, in the following section, we explain the805

distinguishing aspects of our core extraction method in comparison with the study by Deco et al. First, we806

will explain the methodological features of our core extraction method, followed by a discussion of the regions807

identified as cores.808

First, compared to a wide range of existing core extraction methods, our method has unique characteris-809

tics—globality, bidirectionality, and exactness—which also apply to the study by Deco et al. (See Methods810

for details). The first distinct feature of our method is that it extracts cores that are densely bidirectionally811

connected. Considering that bidirectional interactions are regarded as crucial for conscious perception, this ca-812

pability is especially important in this context of neuroscience. While Deco et al.’s approach extracts densely813

connected subnetworks, it does not impose the requirement for bidirectional connections within those cores. As814

an illustrative example, consider the graph in Extended Data Fig. 1-1a and Extended Data Figure. 1-2a. In815

this case, our method extracts only the bidirectionally connected subnetwork as the most central core (Extended816

Data Fig. 1-1a, a node set {EFIJ}). In contrast, the functional rich club method extracts a network that in-817

cludes nodes that are not bidirectionally connected (e.g., nodes A, D, H) as the most central core (Extended818

Data Figure. 1-2a, a node set {ABDEFHIJ}).819
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The second distinction is that our method extracts cores by considering the global structure of the network,820

taking into account whether nodes are interconnected across the entire network, whereas the functional rich821

club method extracts cores based on local metrics and cannot account for such network-wide connectivity. One822

example illustrating this di↵erence is the case where two modules are connected by bidirectional edges (Extended823

Data Fig. 1-1c, d). In this scenario, when considering the global structure, two cores would be expected to be824

extracted. Indeed, in such cases, our method identifies two sub-networks as the most central cores (see Extended825

Data Fig. 1-1c), whereas the functional rich club method is likely to identify the entire network as the most826

central core (see Extended Data Fig. 1-1d).827

The final distinct feature of our method is the exactness of core extraction, whereas other methods are based828

on approximation. Due to computational constraints, Deco et al. apply approximation for core extraction in829

cases with a large number of nodes. By contrast, our method leverages a fast core extraction algorithm (Kitazono830

et al., 2023), allowing us to perform exact core extraction even in cases with a large number of nodes.831

The methodological di↵erences in core extraction lead to di↵erences between the functional rich club method832

and our core extraction method in terms of the identified core regions. Specifically, the functional rich club833

method identifies cortical regions such as the precuneus and the posterior and isthmus cingulate cortex, which834

are part of the Default Mode Network, as central cores, as well as subcortical regions like the hippocampus. On835

the other hand, our core extraction method identifies unimodal sensory processing regions as central cores.836

Future directions837

The present study targeted human subjects; nevertheless, the extension of future analyses to include non-human838

species is an intriguing possibility (Xu et al., 2020; Goulas et al., 2014; Eichert et al., 2020; Fulcher et al., 2019).839

Experimental evidence indicates that bidirectional interactions play a pivotal role in conscious perception across840

various species (Lamme et al., 1998; Supèr et al., 2001; Cauller and Kulics, 1988; Cauller and Kulics, 1991;841

Self et al., 2012; Koivisto et al., 2014; Sachidhanandam et al., 2013; Manita et al., 2015; Nieder et al., 2020;842

Cohen et al., 2018). A comparative study investigating whether the cores with strong bidirectional interactions843

in non-human species consist of regions analogous to those that were identified in the strong cores in this study844

could significantly enhance our understanding of the relationship between bidirectional interactions and conscious845

perception. Such an exploration could o↵er a broader perspective on the neural mechanisms underlying conscious846

perception across di↵erent species and shed light on the evolutionary aspects of consciousness. Cross-species847

comparison is also interesting for understanding the relationship between the cores and lower- and higher-order848

cognitive functions. Lower-order cognitive functions, such as sensory perception, are common to many species,849
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whereas higher-order cognitive functions are more developed in more advanced species. By analyzing cores with850

bidirectional interactions and their correlation with both lower- and higher-order cognitive functions in di↵erent851

species, we can elucidate the fundamental impact of bidirectional interactions on cognitive functionality.852

The current study delved into the association between cores with strong bidirectional interactions and con-853

scious perception; however, further investigation into how cores correlate with di↵erent consciousness states—854

such as wakefulness, sleep, anesthesia, and coma—is required. Previous research has highlighted the role of855

bidirectional interactions not only in the generation of conscious perception but also in maintaining wake-856

fulness (Tononi et al., 2016). Additionally, recent studies revealed that the degree of system-level integra-857

tion between brain regions was associated with consciousness states (Luppi et al., 2019; Luppi et al., 2021;858

Onoda and Akama, 2023). In light of these considerations, a crucial next step would involve identifying cores859

from datasets acquired during unconscious states, such as sleep or anesthesia, and contrasting these with ob-860

servations from wakeful states. Such a comparison could provide deeper insights into the relationship between861

bidirectional interactions and varying levels of consciousness and enhance our understanding of the neurobiolog-862

ical mechanisms governing consciousness and its di↵erent states.863
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Finc K, Bonna K, He X, Lydon-Staley DM, Kühn S, Duch W, Bassett DS (2020) Dynamic reconfiguration of934

functional brain networks during working memory training. Nat. Commun. 11:2435.935

Finc K, Bonna K, Lewandowska M, Wolak T, Nikadon J, Dreszer J, Duch W, Kühn S (2017) Transition of the936
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Figure Legends1085

Figure 1: Schematic of our framework for extracting bidirectionally interacting cores from a1086

whole-brain directed network. Our proposed framework in this study comprises two steps. In the first1087

step, based on brain activity, we estimate the strength of the statistical causal influence between brain regions.1088

a, Specifically, we calculate the NDTE FXY (Deco et al., 2021) from the brain activities of regions X and1089

Y. NDTE FXY represents the strength of statistical causal influence from the source brain region X to the1090

target brain region Y (See Methods for details). b, We then apply this approach to all pairs of brain regions1091

across the whole brain and thereby construct a whole-brain-directed network. c, Examples of the strength of1092

bidirectional connections. i, When two parts of a network are linked unidirectionally, the strength of bidirectional1093

connections w(VL;VR) equals 0. ii, When a connection in one direction is strong (w(VL ! VR) = 3), while the1094

connection in the other direction is weak (w(VR ! VL) = 1), the strength of bidirectional connections is small1095

(w(VL;VR) = 1). iii, When connections in both directions are strong (w(VL ! VR) = w(VR ! VL) = 3),1096

the strength of bidirectional connections is large (w(VL;VR) = 3). d, An example of complexes using a toy1097

network. Nodes BEFIJ are connected bidirectionally whereas nodes ACDGH are connected in a feedforward1098

manner. Strongly bidirectional cores in this network are indicated by a colored background, wherein subnet1099

EFIJ, in orange, has the strongest bidirectional connections, followed by BEFIJ, in blue. Generally, complexes1100

with stronger bidirectional connections are included in those with weaker bidirectional connections to form a1101

unimodal or multimodal hierarchical structure. e, In the second step, from the constructed directed network,1102

we extract cores with strong bidirectional connections. To extract cores, we use the algorithm by Kitazono et1103

al. (Kitazono et al., 2023). This algorithm hierarchically decomposes a network into the cores with the strongest,1104

second strongest, and third strongest bidirectional connections, and so on. In this figure, the subnetwork in1105

yellow represents the core with the strongest bidirectional connections, whereas that in blue represents the1106

second-strongest core. The entire network shown in purple is the weakest core and has parts with completely1107

unidirectional connections.1108

Figure 2: Extracted bidirectionally interacting cores. Compared to subcortical regions, cerebral cortical1109

regions tend to have higher coreness. Furthermore, within the cerebral cortex, ROIs with high coreness are1110

particularly found in the salience/ventral attention, dorsal attention, somatomotor, and visual networks. In1111

contrast, ROIs in the limbic network show low coreness, and the default mode network and frontoparietal control1112

network include ROIs with low coreness. a, Coreness at rest and during seven tasks in the cerebral cortex (top)1113

and the subcortex shown in seven coronal slices (bottom). Here, coreness is not normalized. b, Coreness in the1114
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cerebral cortex (top) and the subcortex shown in seven coronal slices (bottom). Coordinates of the slices were1115

given in the MNI (Montreal Neurological Institute) space. c, Violin plots of coreness according to the divisions of1116

the Yeo-7 network atlas and major divisions of the subcortex. Each violin plot represents the probability density1117

of coreness for each division, and the colored dots inside the plots represent ROIs. The white dot represents the1118

median, and the thick line inside indicates the interquartile range. d, ROIs with coreness > 0.7 or < 0.3 are1119

colored as per the Yeo-7 network atlas.1120

Figure 3: Comparison of the core structure with the mean response rate for iES. There is a1121

correlation between coreness and the mean response rate (MRR) for iES. a, b, A cortical surface rendering of1122

the MRR for iES (Fox et al., 2020) (a) and that of coreness (b, same as Fig. 2b). c, A scatter plot showing the1123

average coreness for each division of the Yeo-17 network atlas (horizontal axis) and the MRR (vertical axis). A1124

positive correlation exists between the coreness and the MRR (r = 0.462). The solid line in the figure represents1125

the least-squares line and the shaded area represents the 95% confidence interval. Each point is color-coded1126

according to the Yeo-7 network atlas and then assigned marker shapes according to the Yeo-17 network atlas.1127

Figure 4: Term-based meta-analysis of the core structure using NeuroSynth. High-coreness ROIs1128

are related to lower-order sensorimotor functions whereas low-coreness ROIs are related to higher-order cognitive1129

functions. This figure shows a term-based meta-analysis using NeuroSynth applied to the coreness of the cerebral1130

cortex. The columns represent coreness, at intervals of 0.05 from 0–0.05 to 0.95–1. The rows represent the topic1131

terms used in the meta-analysis. The grayscale of each cell indicates the Fisher’s z-score representing the1132

association strength between ROIs in each division of coreness and topic terms, as obtained from the meta-1133

analysis. Only components that reached a significant threshold of z > 3.1 are colored. For visualization, topic1134

terms are arranged by the weighted mean of the coreness of intervals with Fisher’s z-score as weights, by placing1135

terms related to high-coreness regions at the top and those related to low-coreness regions at the bottom. Only1136

the cerebral cortical ROIs were used for this analysis (see Methods for details).1137

Figure 5: Comparison of the core structure with the functional connectivity gradient. The func-1138

tional connectivity gradient (Margulies et al., 2016) and coreness are correlated. a, b, A cortical surface rendering1139

of the cortical functional connectivity gradient (Margulies et al., 2016) (a) and that of coreness (b, same as Fig. 21140

b). c, A scatterplot of coreness and the functional connectivity gradient. A positive correlation exists between1141

coreness and the functional connectivity gradient (r = 0.397). The solid line represents the least-squares line1142

and the shaded area represents the 95% confidence interval. Each point represents an ROI and is color-coded1143
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according to the Yeo-7 network atlas (See Methods for details).1144

Figure 6: Comparison of the core structure with the case when bidirectionality is ignored. a1145

and b, When bidirectionality is ignored, the cortical regions tend to have higher coreness compared to the1146

subcortical regions, as in the case when bidirectionality is considered. a, A cortical surface rendering of coreness1147

when bidirectionality is ignored in the cerebral cortex (top) and that in the subcortex shown in seven coronal1148

slices (bottom). The coordinates of the slices were given in the MNI space. b, Violin plots of coreness when1149

bidirectionality is ignored according to the divisions of the Yeo-7 network atlas and major divisions of the1150

subcortex. c, A comparison of coreness between considering and ignoring bidirectionality. The di↵erence between1151

the two cases is small and large for regions with high and low coreness when bidirectionality is considered,1152

respectively. Each point is an ROI and is color-coded according to the Yeo-7 network atlas and subcortical1153

divisions. The solid line represents the identity line (y = x). The blue background highlights regions with1154

relatively large changes in coreness between considering and ignoring bidirectionality. d, A cortical surface1155

rendering of the changes in coreness.1156

Figure 7: Comparison with other methods to extract strongly connected cores. Each metric is the1157

average value across the resting state and seven tasks, after being normalized at the maximum in each brain1158

state. Each point is color-coded according to the Yeo-7 network atlas and subcortical divisions. The solid line1159

represents the identity line (y = x).1160
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