

РЕКОМЕНДАЦИИ ДЛЯ УЧАСТНИКОВ

Всероссийской олимпиады школьников «Высшая проба» по профилю «Информатика» для 9, 10, 11 класса

2025/2026 уч. г.

Рекомендации для участников

олимпиады школьников «Высшая проба» по профилю «Информатика»

2025/2026 уч. г.

1. Аннотация

Олимпиада «Высшая проба» по информатике проводится в двух возрастных категориях (9-10 классы и 11 класс). Успешная подготовка к олимпиадам по информатике (и в частности, к олимпиаде «Высшая проба») включает в себя несколько аспектов. Во-первых, это знание алгоритмов и структур данных, указанных в перечне тем олимпиады. Здесь важно отметить, что понимание этих алгоритмов предполагает наличие у учащегося сильной математической базы. Поэтому нередко учащиеся параллельно готовятся к олимпиадам и по информатике, и по математике.

Другой навык, который также важен в олимпиадной информатике – умение быстро и правильно написать программную реализацию решения задачи. В настоящий момент одними из самых популярных и удобных для этого языков программирования являются Python и C++. Изучить основы работы с ними можно в том числе посредством прохождения онлайн-курсов. Следует уделять внимание и развитию навыка строения математической модели задачи – чтения и разбора условий задач, ведь нередко за сложными формулировками скрывается простое решение. Эти качества развиваются посредством постоянной практики, регулярного прорешивания задач. Не во всех школах на уроках информатики программированию и алгоритмам уделяется достаточное для подготовки к олимпиадам внимание. В этом случае может осуществляться самостоятельная подготовка с помощью специальных интернет-ресурсов, некоторые из которых приведены ниже. Ежегодно подготовкой к олимпиадам по информатике занимаются различные профильные смены и летние школы. Так, Высшая школа экономики организует Летнюю школу по компьютерным наукам. Во многих городах занятия олимпиадной информатикой организуются при университетах либо в учреждениях дополнительного образования.

2. Структура варианта и типы олимпиадных заданий

Олимпиада «Высшая проба» по информатике проводится в два этапа:

- **Отборочный этап** проходит в режиме онлайн и состоит из 3 задач. Максимальное количество баллов по каждой задаче -100 баллов. Участники, показавшие лучшие результаты на первом этапе, приглашаются на второй.
- Заключительный этап, который проходит приблизительно на 20 площадках по всей России и длится 4 часа. Задание очного этапа состоит из 4-5 задач. Максимальное количество баллов по каждой задаче 100 баллов.

Решением задачи является программа, написанная на одном из допустимых языков программирования (в том числе C++, Python). Решение разных задач может быть написано на разных языках программирования. Решение проверяется с помощью

автоматической тестирующей системы на заранее подготовленном наборе тестов. За каждый пройденный тест начисляется определённое количество баллов. В ходе работы не допускается использование литературы, записей, электронных устройств.

Перед олимпиадами полезно решить задачи из архивов прошлых лет. Архив заданий олимпиады «Высшая проба» по информатике находится на официальном сайте олимпиады.

3. Перечень и содержание тем

Тема 1. Целочисленная арифметика.

Арифметические операции (умножение, деление, остатки, сложение, вычитание). Битовые операции и работа с отдельными битами.

Тема 2. Условный оператор.

Ветвления, конструкции if-else и if else-if, выбор из многих вариантов.

Тема 3. Вещественная арифметика.

Арифметические операции с вещественными числами. Точность.

Округления.

Тема 4. Операторы цикла.

Операторы цикла for, while, do ... while. Операторы break и continue.

Тема 5. Массивы.

Одномерные и многомерные массивы. Динамическое выделение памяти. Ввод и вывод массивов.

Тема 6. Процедуры и функции.

Локальные и глобальные переменные. Передача параметров по значению и по ссылке. Рекурсия.

Тема 7. Работа со строками.

Стандартные функции для обработки строк. Конечные автоматы.

Тема 8. Арифметические алгоритмы.

НОД и НОК, системы счисления, длинная арифметика, простые числа и разложение на делители, остатки, быстрое возведение в степень.

Тема 9. Алгоритмы поиска.

Линейный поиск, двоичный поиск, поиск подстроки в строке, два указателя.

Тема 10. Алгоритмы сортировки.

Сортировка подсчетом, сортировка выбором, сортировка пузырьком, применение встроенных сортировок.

Тема 11. Перебор и методы его оптимизации.

Полный перебор, связь с задачами о системе счисления.

Рекурсивный перебор и методы его оптимизации.

Тема 12. Динамическое программирование.

Рекуррентные последовательности, простое динамическое программирование. Динамическое программирование с несколькими параметрами, по подстрокам, по подмножествам, по профилю, по поддеревьям, на ациклических графах.

Тема 13. Жадный алгоритм.

Области применения и стандартные задачи, решаемые жадным алгоритмом. Доказательство применимости.

Тема 14. Алгоритмы на невзвешенных графах.

Обход в ширину и глубину и их применение. Топологическая сортировка, компоненты связности, поиск циклов, проверка на двудольность, мосты, точки сочленения, конденсация. Паросочетания. Эйлеров цикл.

Тема 15. Алгоритмы на взвешенных графах.

Поиск кратчайших путей: алгоритмы Дейкстры, Беллмана-Форда, Флойда. Минимальные остовные деревья. Потоки.

Тема 16. Вычислительная геометрия.

Скалярное и косое произведение. Площади. Взаимное расположение фигур на плоскости и в пространстве. Выпуклые оболочки.

Тема 17. Линейные структуры данных.

Стек, дек, очередь. Решение задачи о проверки правильной скобочной последовательности, минимум в окне, обратная польская нотация.

Тема 18. Деревья.

Бинарное дерево поиска. Сбалансированность бинарных деревьев поиска. Корневые деревья, система непересекающихся множеств. Дерево отрезков, решение задач RMQ и RSQ. Куча. Дерево Фенвика. Декартово дерево.

Тема 19. Хеши и хеш-таблины.

Хеш-функции, остатки. Хеш-таблицы. Решение задач о массовом поиске подстрок с помощью суффиксного массива. Бинарный поиск с хешами префиксов.

Тема 20. Разреженные таблицы.

Sparse table. Использование разреженных таблиц для решения задачи поиска наименьшего общего предка в дереве.

Тема 21. Эвристические методы и стандартные идеи.

Метод «Разделяй и властвуй», метод Монте-Карло, meet-in-themiddle.

4. Рекомендуемая литература и другие источники

Интернет-источники

1. Онлайн-курс «Введение в программирование (C++)», М.С. Густокашин — https://stepik.org/course/363

- 2. Онлайн-курс «Основы программирования на Python», М.С. Густокашин https://online.hse.ru/showcase/it/python-osnovy-programmirovaniya
- 3. Крупнейшая русскоязычная библиотека описаний и реализаций алгоритмов программирования http://e-maxx.ru/
- 4. Социальная сеть, посвященная программированию и соревнованиям по программированию https://codeforces.com. На сайте регулярно проводятся соревнования, навыки участников отражает рейтинг, а прошедшие соревнования могут быть использованы для подготовки
- 5. Набор лекций, тематических туров и разборов задач https://yandex.ru/yaintern/algorithm-training_1

Литературные источники

- 1. Шень А., Программирование: теоремы и задачи М.: Издательство МЦНМО, 2017
- 2. Кормен, Т., Лейзерсон, Ч., Ривест, Р., Штайн, К. Алгоритмы: построение и анализ. М.: Вильямс, 2005