

ДЕМОНСТРАЦИОННЫЙ ВАРИАНТ ОТБОРОЧНОГО ЭТАПА

Всероссийской олимпиады школьников «Высшая проба» по профилю «Информатика» для 9, 10, 11 классов

2025/2026 уч. г.

Задача А. Магическая таблица

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

У Кости есть любимое число K. Гуляя по парку, он нашел странную магическую таблицу размером $N \times M$.

В первой строчке было написано 1, 2, ... M

Во второй M+1, M+2, ... 2M

И т.д

В последней строчке написано $(N-1)\cdot M+1,\, (N-1)\cdot M+2,\, ...\,\, N\cdot M$

Ему стало интересно количество пар соседних по стороне клеток с разностью меньше K, но у него ещё не сделаны уроки. Помогите Косте и решите задачу за него.

Формат входных данных

В трёх строках вводится три числа N, M, K $(1 \leqslant N, M, K \leqslant 10^9)$ — размеры магической таблицы и любимое число Кости.

Формат выходных данных

Выведите одно целое число — количество пар соседних по стороне клеток с разностью меньше K.

Система оценки

Решения, правильно работающие при $N \cdot M \leq 10^6$, будут оцениваться в 30 баллов.

Решения, правильно работающие при $N \leq 100$, будут оцениваться в 20 баллов.

Решения, правильно работающие при $M \leqslant 100$, будут оцениваться в 20 баллов.

Пример

стандартный ввод	стандартный вывод
4	24
4	
100	

Задача В. k-характеристика массива

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Дан массив целых чисел a длины n. Вы можете выбрать какие-то числа массива, так чтобы были выполнены следующие условия:

- ullet на каждом отрезке массива длины k должно быть выбрано хотя бы одно число.
- наименьшее из выбранных чисел должно быть максимально возможным.

Назовем k-характеристикой массива — наименьшее из выбранных чисел для данного k. Найдите k-характеристику массива для каждого k от 1 до n.

Формат входных данных

В первой строке входных данных содержится единственное целое число $n\ (1\leqslant n\leqslant 2\cdot 10^5)$ — длина массива.

Вторая строка содержит n целых чисел a_1, a_2, \ldots, a_n $(1 \le a_i \le 10^9)$ — элементы массива.

Формат выходных данных

Выведите n целых чисел, где i-тое число ($1 \le i \le n$) является i-характеристикой массива.

Система оценки

Решения, верно работающие для случая $a_i \leqslant a_{i+1}$, будут набирать не менее 5 баллов.

Решения, верно работающие для случая $a_i \geqslant a_{i+1}$, будут набирать не менее 5 баллов.

Решения, верно работающие для $n \leq 300$, будут набирать не менее 25 баллов.

Решения, верно работающие для $n \leqslant 5000$, будут набирать не менее 50 баллов (включая 25 баллов за $n \leqslant 300$).

Решения, верно работающие для случая $a_i \leqslant 2$, будут набирать не менее 5 баллов.

Решения, верно работающие для случая $a_i \le 10$, будут набирать не менее 15 баллов (включая 5 баллов за $a_i \le 2$).

Примеры

стандартный ввод	стандартный вывод
4	2 3 6 6
3 6 3 2	
7	1 3 4 5 5 7 7
1 5 4 2 3 7 6	
3	1 3 6
6 3 1	

Замечание

Найдём k-характеристику массива из первого примера (выбранные элементы выделены **жир- ным**) для каждого k:

- При k=1: можно выбрать следующие элементы $[{\bf 3},{\bf 6},{\bf 3},{\bf 2}]$, каждый отрезок длины 1 содержит выбранное число, наименьшее из выбранных чисел 2.
- При k=2: можно выбрать следующие элементы $[{\bf 3},6,{\bf 3},2]$, каждый отрезок длины 2 содержит выбранное число, наименьшее из выбранных чисел 3.
- При k=3: можно выбрать следующие элементы [3,6,3,2], каждый отрезок длины 3 содержит выбранное число, наименьшее из выбранных чисел 6.
- При k=4: можно выбрать следующие элементы [3,6,3,2], каждый отрезок длины 4 содержит выбранное число, наименьшее из выбранных чисел 6.

Задача С. Деревянный ксор

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 4 секунды Ограничение по памяти: 512 мегабайт

Берляндия — это страна, состоящая из n городов. Дорожную сеть Берляндии можно представить в виде взвешенного дерева, то есть всего в стране n-1 дорога (обозначим города, которые соединяет i-я дорога за v_i, u_i и её вес за w_i), и от любого города можно добраться до любого другого ровно по одному пути, если не посещать никакой город дважды.

Назовём город u достижимым из города v, если на единственном простом пути из v в u, который состоит из рёбер $i_1, i_2, \cdots i_k$, для любого $1 \leqslant m \leqslant k$ верно, что $(w_{i_1} \oplus w_{i_2} \oplus \cdots w_{i_{m-1}} \oplus w_{i_m}) \neq 0$, где \oplus обозначает операцию побитового исключающего «ИЛИ» — бинарная операция, действие которой эквивалентно применению логического исключающего «ИЛИ» к каждой паре битов, которые стоят на одинаковых позициях в двоичных представлениях операндов. Другими словами, если оба соответствующих бита операндов равны между собой, двоичный разряд результата равен 0; в противном случае, двоичный разряд результата равен 1.

Иными словами, на пути от v до u побитовый исключающий ИЛИ рёбер на непустом префиксе ни разу не равен нулю. Заметим, что по определению v достижима из v.

Требуется для каждого города посчитать количество достижимых из него городов.

Формат входных данных

В первой строке дано единственное целое число n ($1 \le n \le 200\,000$) — число городов в Берляндии. В каждой из следующих n-1 строк даны по три целых числа v_i, u_i, w_i ($1 \le v_i \le n, 1 \le u_i \le n, 0 \le w_i \le 2 \cdot 10^9$), задающие рёбра в формате, описанном в условии. Гарантируется, что заданный граф является деревом.

Формат выходных данных

Выведите в одну строку n чисел через пробел. i-е число равно количеству достижимых городов из i-го города.

Система оценки

Решения, корректно работающие для $n \leq 5000$ получат не менее 32 баллов.

Решения, корректно работающие в случае $w_i \leq 1$ получат не менее 16 баллов.

Решения, корректно работающие в случае $v_i = i, u_i = i + 1$ получат не менее 16 баллов.

Примеры

стандартный ввод	стандартный вывод
5	3 5 5 3 1
1 2 1	
2 3 2	
3 4 3	
4 5 0	
5 1 2 3	4 5 4 3 4
2 3 2	
2 4 3	
1 5 1	