International Youth Olympiad 2018 training version

1. Find the minimal value of a function $f(x)=\frac{5 x^{2}+10 x+13}{x^{2}+2 x+3} \quad$.(20 points)
2. Calculate a sum of all positiveinteger roots of an equation $\left|2 x^{2}+4 x+5\right|-|x-28|=2 x^{2}+5 x-23$ which are divisible by 3 . (20 points)
3. Consider a common tangentto parabolas $y=x^{2}+1$ and $y=-x^{2}-1$. Find the absolutevalue of its slope. (20 points)
4. Many participantsof a mathematicalclass also take part in a class on programming. The share of these people among all the participantsof the mathematicalclass is not less than 95.5% and not more than 96.5%. What is the minimal number of participants of the mathematicalclass when this situation is possible? (15 points)
5. B and C are two points on the same side of an angle with a vertex A. Let X be a point on the other side of the angle A, such that angle $B X C$ reaches its maximal value (among all possible positions of $X)$. Find the length of the segment $A X$, provided that angle A equals to 60° and the lengthes of the segments $A B$ and $A C$ equal to 7 and 12 respectively. (15 points)
6. Peter wants to paint the stairs and he has three colours of paint to do that: blue, red, and white. He doesn't have to use all the colours (or even two of them) but he still wants to follow some rules: 1) each step of the stairs can be coloured in one colour only; 2) consecutive steps may not be of the same colour; 3) a blue step (if any) must have a red and a white neighbour. How many different colour patternsexist for 12-step stairs? (10 points)
