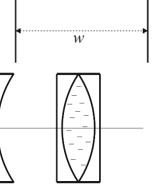
Время выполнения заданий — 240 минут.

Пишите разборчиво. В работе не должно быть никаких пометок, не относящихся к ответам на вопросы. Если Вы не знаете ответа, ставьте прочерк.

Максимальное количество баллов — 100.

Задача 1 (20 баллов). Цилиндр радиуса R и массы m плотно вставлен в жёстко закреплённую трубу. Ось цилиндра вертикальна. Чтобы его продвинуть, надо приложить в вертикальном направлении силу, не меньшую F, которая велика по сравнению с весом цилиндра, $F\gg mg$. Цилиндр начинают вращать с постоянной угловой скоростью ω , не прикладывая при этом вертикальной силы. Найдите


- 1. требующийся для этого момент силы
- 2. скорость вертикального перемещения цилиндра

Трение цилиндра о трубу является сухим.

Задача 2 (20 баллов). Цилиндрический сосуд длиной $L=1.5\,\mathrm{M}$, разделённый лёгким теплонепроницаемым поршнем, заполнен идеальным газом. В начальном состоянии объём левой части сосуда вдвое больше правой, а температуры в обеих частях одинаковы. Насколько переместится поршень, если температуру в правой части увеличить вдвое? Температура в левой части поддерживается постоянной.

Задача 3 (20 баллов). По вертикальным электропроводящим рельсам в поле тяжести может скользить контакт массы m и длины w, равной расстоянию между рельсами. Рельсы замкнуты на идеальную индуктивность L и находятся в горизонтальном однородном магнитном поле с индукцией \vec{B} перпендикулярной плоскости рельс. Вначале контакт поддерживался внешней силой в покое. Определить максимальное смещение контакта от начального положения после того, как внешняя сила убрана и контакт начинает движение с нулевой начальной скоростью. Электрическим сопротивлением рельс и контакта можно пренебречь.

Задача 4 (20 баллов). Две тонкие плосковогнутые линзы, будучи сложены плоскими сторонами, образуют линзу с фокусным расстоянием F. Найти фокусное расстояние линзы, которая получится, если эти линзы сложить вогнутыми сторонами, а пространство между ними заполнить водой. Показатель преломления стекла n=1.66, воды n=1.33.

б)

a)

 $\times \times \times$

mg

Задача 5 (20 баллов). Какая часть атмосферного кислорода Земли израсходуется при сжигании двух миллиардов тонн угля, что приблизительно есть годовой мировой расход угля?

11 класс. Решения.

Каждая задача оценивается в 20 баллов, всего 5 задач, сумма баллов равна 100. Решение каждой задачи состоит из нескольких шагов, соответствующее разбиение по баллам приведено после решения каждой задачи.

Задача 1. Механика.

Условие. Цилиндр радиуса R и массы m плотно вставлен в жёстко закреплённую трубу. Ось цилиндра вертикальна. Чтобы его продвинуть, надо приложить в вертикальном направлении силу, не меньшую F, которая велика по сравнению с весом цилиндра, $F\gg mg$. Цилиндр начинают вращать с постоянной угловой скоростью ω , не прикладывая при этом вертикальной силы. Найдите требующийся для этого момент силы и скорость вертикального перемещения цилиндра. Трение цилиндра о трубу является сухим.

Источник: задача предлагалась на Московских физических олимпиадах (Варламов et al., 2007, Задача 1.70)

Решение. Сила трения направлена против направления движения соответствующего элемента участка поверхности цилиндра. Скорость движения элемента поверхности цилиндра складывается из вращения и скорости v поступательного движения в вертикальном направлении. Таким образом, отношение компоненты F_z/S силы трения, действующей вертикально на цилиндр, к азимутальной компоненте F_{ϕ}/S силы трения, действующей против вращения, равно

$$\frac{F_z/S}{F_\omega/S} = \frac{v}{\omega R}$$

Трение поверхности цилиндра о кольцо сухое. Поэтому если цилиндр находится в движении, то поверхностная плотность силы трения, действующей со стороны трубы на поверхность цилиндра, равна F/S, где S — площадь поверхности соприкосновения цилиндра и трубы:

$$(F_z/S)^2 + (F_{\varphi}/S)^2 = (F/S)^2,$$
 $F_z^2 + F_{\varphi}^2 = F^2$

В вертикальном направлении цилиндр движется равномерно, поэтому вертикальная компонента полной силы трения компенсирует силу тяжести, так что

$$F_z = mg$$
.

Первые два уравнения позволяют найти оставшиеся две неизвестных – F_{ω} и v:

$$v = \frac{\omega R}{\sqrt{1 + (F/mg)^2}} \approx \frac{mg}{F} \omega R, \qquad F_{\varphi} = \sqrt{F^2 - (mg)^2}.$$

Момент сил, который надо прикладывать к цилиндру для обеспечения его вращения с постоянной угловой скоростью, равен

$$M = RF_{\varphi} = R\sqrt{F^2 - (mg)^2} \approx RF.$$

Задача 2. Термодинамика.

Условие. Цилиндрический сосуд длиной $L=1.5\,\mathrm{M}$, разделённый лёгким теплонепроницаемым поршнем, заполнен идеальным газом. В начальном состоянии объём левой части сосуда вдвое больше правой, а температуры в обеих частях одинаковы. Насколько переместится поршень, если температуру в правой части увеличить вдвое? Температура в левой части поддерживается постоянной.

Источник: задача предлагалась на вступительном экзамене в МФТИ.

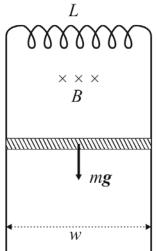
Решение: Рассмотрим состояние газа до нагрева правой половины. В этом состоянии давление и температура в обеих половинах равны, а объём левой половины в два раза больше. Из этого следует, что количество молей газа в левой части в два раза больше, чем в правой. Пусть в правой части ν молей. В этом состоянии длина сосуда поделена между поршнем в соотношении $1 \,\mathrm{m}:~0.5 \,\mathrm{m}.$

После нагрева правой части в обеих частях остаётся равным только давление, обозначим его значение после нагрева P. Для левой части имеет место уравнение Клайперона-Менделеева

$$PV_L = (2\nu)RT$$

Для правой части имеет место уравнение Клайперона-Менделеева выглядит как

$$PV_R = \nu R(2T)$$


Длина сосуда поделена поршнем в отношении $V_L/V_R=1/1$, то есть $0.75~{\rm M}:~0.75~{\rm M}.$ Таким образом, поршень сдвинется на $0.25~{\rm M}$

Ответ: $l = 0.25 \,\mathrm{M}.$

11 класс

Задача 3. Электричество и магнетизм.

Условие. По вертикальным электропроводящим рельсам в поле тяжести может скользить контакт массы m и длины w, равной расстоянию между рельсами. Рельсы замкнуты на идеальную индуктивность L и находятся в горизонтальном однородном магнитном поле с индукцией \overrightarrow{B} перпендикулярной плоскости рельс. Вначале контакт поддерживался внешней силой в покое. Определить максимальное смещение контакта от начального положения после того, как внешняя сила убрана и контакт начинает движение С нулевой начальной скоростью. Электрическим сопротивлением рельс и контакта пренебречь.

Источник: задача предлагалась на вступительном экзамене в МФТИ (Задачи вступительных экзаменов по физике и математике в МФТИ в 1986-1988 годах, 1988, 1986 год, Билет 5, Задача 3).

Решение 1. Пусть v — скорость контакта, которая положительна, если контакт движется вверх; I — ток по контуру контакт-рельса-индуктивность-рельса, который положителен, если ток направлен против часовой стрелки. Изменение скорости контакта происходит под действием двух сил — силы тяжести и силы Ампера, действующей со стороны внешнего поля \vec{B} :

$$m\frac{\mathrm{d}v}{\mathrm{d}t} = -mg + wIB$$

Изменение тока в контуре происходит по причине изменение потока внешнего магнитного поля через контур при движении контакта: поскольку активное сопротивление контура мало, то полный магнитный поток через контур с учётом потока через индуктивность остаётся всегда равным нулю. Запишем это условие:

$$L\frac{\mathrm{d}I}{\mathrm{d}t} = -wBv$$

Эти два уравнения вместе определяют гармонические колебания: продифференцировав второе и подставив в первое, получим

$$\frac{\mathrm{d}^2 I}{\mathrm{d}t^2} + \omega^2 (I - I_0) = 0,$$
 $\omega^2 = \frac{w^2 B^2}{mL},$ $I_0 = \frac{mg}{wB}$

Величина ω есть частота колебаний. Начальным условиями является нулевое значение тока, I(0)=0, а также нулевое значение его производной по времени, $(\mathrm{d}I/\mathrm{d}t)(0)=0$, поскольку по условию задачи начальная скорость контакта равна нулю. Поэтому величина I_0 определяет амплитуду колебаний тока, так что

$$I(t) = I_0(1 - \cos(\omega t))$$

Теперь можно найти зависимость скорости от времени, воспользовавшись уже выписанным уравнением на ток в контуре:

$$v = -\frac{L}{wB}\frac{\mathrm{d}I}{\mathrm{d}t} = -\frac{Lmg}{w^2B^2}\omega\sin(\omega t)$$

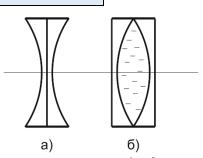
Поэтому амплитуда колебаний положения рельс равна

$$z_A = \frac{Lmg}{w^2 B^2},$$

а полное максимальное смещение направлено вниз и по модулю равно удвоенной амплитуде. Таким образом, ответ равен

$$\Delta z_{\text{max}} = -2z_A = -\frac{2Lmg}{w^2 B^2}.$$

Решение 2. Для получения искомого ответа можно не выписывать явно уравнения движения, а ограничиться только энергетическими соображениями. Полная энергия складывается из потенциальной энергии контакта, его кинетической энергии, и магнитной энергии, запасённой в катушке индуктивности. В точках остановки, когда скорость контакта равна нулю, кинетическая энергия контакта равна нулю. Первой такой точкой является исходное положение контакта, второй точкой — нижняя точка разворота контакта. Изменение полного потока через контур должно оставаться всегда равным нулю, поскольку активное сопротивление контура равно нулю. Поэтому магнитная энергия в катушке определяется магнитным потоком через неё, который компенсирует изменение потока внешнего поля через полный контур рельса-контакт-рельса-катушка:


$$LI = -Bw\Delta z$$

где Δz – смещение контакта по вертикальной координате. Закон сохранения энергии для нижней точки поворота выглядит как

$$\frac{LI^2}{2} + mg\Delta z_{\text{max}} = 0, \qquad \Delta z_{\text{max}} = -\frac{2Lmg}{w^2B^2}.$$

Задача 4. Оптика.

Условие. Две тонкие плосковогнутые линзы, будучи сложены плоскими сторонами, образуют линзу с фокусным расстоянием F. Найти фокусное расстояние линзы, которая получится, если эти линзы сложить вогнутыми сторонами, а пространство между ними заполнить водой. Показатель преломления стекла n=1.66, воды $-n_{\rm B}=1.33$.

Источник: задача предлагалась на вступительном экзамене в МФТИ (Задачи по математике и физике, предлагавшиеся на вступительных экзаменах в 1974-76 годах., 1977, 1975 год, Билет 8, Задача 4).

Решение. Пусть R — радиус кривизны поверхности плосковогнутой линзы. Тогда фокусное расстояние составной линзы в первом опыте определяется по формуле

$$\frac{1}{F} = -2\frac{n-1}{R}$$

Множитель 2 стоит, поскольку последовательно составлены две линзы. Во втором опыте можно представить дело так, то последовательно составлены три линзы: плосковогнутая стеклянная, двояковыпуклая сделанная из воды, и ещё одна плосковогнутая стеклянная. Фокусное расстояние такой линзы удовлетворяет соотношению

$$\frac{1}{F'} = -2\frac{n-1}{R} + 2\frac{n_{\rm B} - 1}{R} = -2\frac{n-n_{\rm B}}{R}.$$

Воспользовавшись численным данными для показателей стекла и воды, получаем, что отношение нового и старого фокусного расстояния равны

$$\frac{F'}{F} = 2.$$

Задача 5. Задача-оценка.

Условие. Какая часть атмосферного кислорода Земли израсходуется при сжигании двух миллиардов тонн угля, что приблизительно есть годовой мировой расход угля?

Источник: задача предлагалась на вступительных испытаниях в НГУ (*Физика в НГУ.* Школьная физика в задачах с решениями. Часть І., 2007, Задача 5.47)

Решение. Оценим массу кислорода M_o , содержащегося во всей атмосфере. Массовая доля кислорода в атмосфере равна 23.1%, возьмём для оценки долю 1/4. Масса $M_{\rm atm}$ всей атмосферы вычисляется из соображений гидростатики: её столб создаёт атмосферное давление $P_{\rm atm}$. Поэтому поверхностная массовая плотность атмосферы равна

$$\frac{M_{\rm atm}}{4 \pi R_2^2} = \frac{P_{\rm atm}}{q},$$

где $R_3=6400~{\rm KM}$ — радиус Земли (а $4~\pi~R_3^2$, соответственно, — площадь поверхности Земли), а g — ускорение свободного падения. Таким образом, масса кислорода атмосферы равна

$$M_o = \frac{M_{\text{atm}}}{4} = \frac{\pi R_3^2 P_{\text{atm}}}{a}.$$

Реакцией горения углерода, из которого состоит каменный уголь, является $C+O_2=CO_2$. Масса атома углерода равна 12 а.е.м., масса молекулы кислорода — 32 а.е.м. Таким образом, сжигание $M_c=2$ млрд. т. угля потребует массу кислорода, равную

$$M_{\rm y6ыль} = \frac{32}{12} M_c$$

Отношение изъятого кислорода на горения ко всему его количеству равно

$$\frac{M_{\rm yбыль}}{M_{\odot}} = 4 \cdot 10^{-6}$$

Литература

- Варламов, С. Д., Зиньковский, В. И., Семёнов, М. В., Старокуров, Ю. В., Шведов, О. Ю., & Якута, А. А. (2007). Задачи Московских физических олимпиад по физике. 1986-2005. Приложение: олимпиады 2007 и 2007. (2-е издание, исправленное и дополненное. ed.). Москва: МЦНМО.
- Задачи вступительных экзаменов по физике и математике в МФТИ в 1986-1988 годах. (1988). Москва: МФТИ.
- Задачи по математике и физике, предлагавшиеся на вступительных экзаменах в 1974-76 годах. (1977). Москва: Московский ордена трудового красного знамени физикотехнический институт.
- Физика в НГУ. Школьная физика в задачах с решениями. Часть І. Вступительные задачи по физике в НГУ 1966-1985 гг. (2007). (В. Г. Меледин, Черкасский, В.С. Еd.). Новосибирск: Новосибирский государственный университет.