Вопрос 1 Балл: 4 В каком случае основное энергетическое состояние атомного ядра характеризуется полуцелым спином? число нейтронов нечетно атомное число четно зарядовое число нечетно зарядовое число четно атомное число нечетно Правильный ответ: атомное число нечетно Вопрос 2 Балл: 4 Поляризуемость вакуума равна... 0 0 $_{1}\overline{4\pi}$ 0 -1 0

Правильный ответ:

0

Вопрос **3** Балл: 4

Какова идеальная форма зеркала для фокусировки параллельного пучка в точку?

O

параболоид

O

сфера

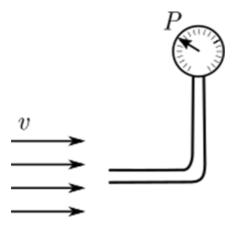
O

гиперболический параболоид

0

призма

0


гиперболоид

Правильный ответ: параболоид

Вопрос 4

Балл: 4

Манометр, подключенный к трубке Пито (см. рис.), погруженной в поток воздуха в атмосфере, показывает давление P=105 кПа. Атмосферное давление P=100 кПа. Оцените скорость потока v. Плотность газа принять равной $\rho \approx 1$ кг/м 3 .

$$v \approx 10^2 \text{ m/c}$$

C

$$v \approx 22 \text{ M/c}$$

O

$$v \approx 5 \text{ M/c}$$

0

$$v \approx 10^3 \text{ m/c}$$

Правильный ответ:

```
v \approx 10^2 \text{ m/c}
```

Вопрос **5** Балл: 4

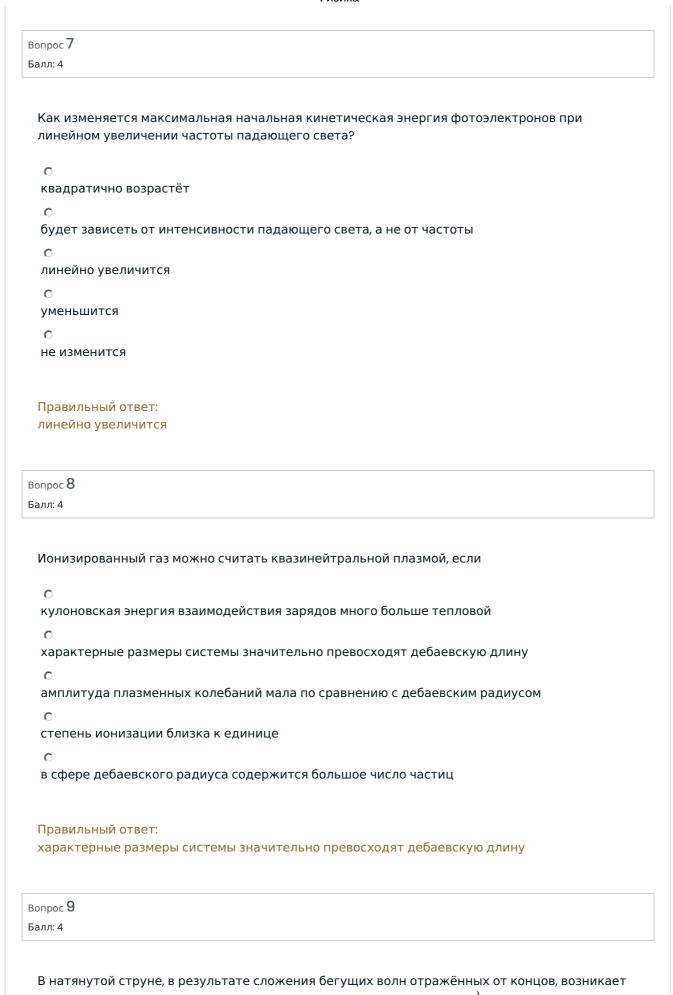
Чему равна суммарная вращательная энергия молекул метана CH_4 , содержащегося под давлением P в сосуде с объемом V при нормальных условиях?

Правильный ответ:

 $\frac{3}{2}$ · PV

 $4 \cdot PV$

Вопрос **6** Балл: 4


Терм основного состояния аргона (электронная конфигурация [Ar] = 3s_2 3p_6) записывается как:

 $^{3}P_{2}$ 0 $^{1}P_{3/2}$ 0 $^{3}P_{1/2}$

 $^{1}S_{0}$ $^{\circ}$ $^{3}P_{3/2}$

Правильный ответ:

 ${}^{1}S_{0}$

2022 Олимпиада студентов и выпускников «Высшая лига» - отборочный этап

стоячая волна. Чему равно отношение длин бегущей и стоячей волн $^{\Lambda}$?

```
O
 1
  0
  O
  4
  0
 \frac{1}{4}
  0
  2
 Правильный ответ:
Вопрос 10
Балл: 4
 Чему равен суммарный спин пары электронов, образующих ковалентную связь?
 либо 0, либо 1
  0
 1
  0
 1/2
  0
  0
 Правильный ответ:
 0
Вопрос 11
Балл: 4
 Тело массой 1 кг движется вдоль прямой по закону x(t) = -bt + at^3, где b = 4 м/с и a = 1 м/с<sup>3</sup>.
 Какая сила действует на тело в момент t = 1 с?
  O
  6 H
  0
  2 H
  0
  4 H
  О
  0 H
  0
```

12 H

Правильный ответ:

6 H

Вопрос 12

Балл: 4

Какое уравнение Максвелла отражает факт отсутствия магнитных зарядов?

C

$$\oint \vec{F} \cdot d\vec{l} = -\frac{1}{c} \int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S}$$

 \mathcal{C}

$$\oint_{S} \vec{D} \cdot d\vec{S} = 4\pi q$$

0

Данное явление не описывается системой уравнений Максвелла

_

$$\oint_S \vec{B} \cdot d^{\vec{S}} = 0$$

C

$$\oint_{\vec{I}} \vec{H} \cdot d\vec{I} = \frac{4\pi}{c} \cdot J + \frac{1}{c} \int_{S} \frac{\partial \vec{D}}{\partial t} \cdot d\vec{S}$$

Правильный ответ:

$$\oint_S \vec{B} \cdot d^{\vec{S}} = 0$$

Вопрос 13

Балл: 4

Под каким углом силовые линии электрического поля могут пересекать эквипотенциальные поверхности?

O

45°

0

под любым

O

0°

0

не пересекают ни под каким

O

90°

Правильный ответ:

90°

Вопрос 14

Балл: 4

Какое из приведенных ниже уравнений, является уравнением движения ракеты в свободном пространстве. Скорость истечения газов u.

C

$$u^{\frac{dv}{dt}} = -M^{\frac{dm}{dt}}$$

0

$$\frac{dv}{dt} = \frac{dm}{dt}$$

0

$$\frac{dv}{M} \frac{dm}{dt} = \frac{dm}{dt}$$

0

$$u^{\frac{dv}{dt}} = M^{\frac{dm}{dt}}$$

Правильный ответ:

$$M^{\frac{dv}{dt}} = -u^{\frac{dm}{dt}}$$

Вопрос 15

Балл: 4

При изотермическом увеличении объёма 1 моля гелия в 3 раза, его энтропия...

C

уменьшилась в $R \cdot \ln 3$ раза

увеличилась в $R \cdot \ln 3$ раза

O

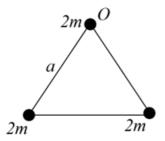
уменьшилась на $R \cdot \ln 3$

C

увеличилась в 3 раза

C

увеличилась на $R \cdot \ln 3$


Правильный ответ:

увеличилась на *R* · ln3

Вопрос 16

Балл: 4

На рисунке изображена система трёх точечных масс, расположенных в вершинах равностороннего треугольника со стороной а.

Момент инерции системы относительно оси, проходящей через точку О перпендикулярно чертежу, равен...

0

 $8 \cdot ma^2$

0

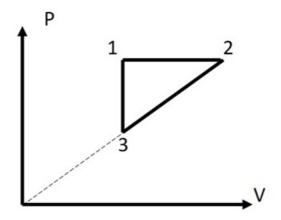
 $4 \cdot ma^2$

O

 $\frac{1}{2} \cdot ma^2$

0

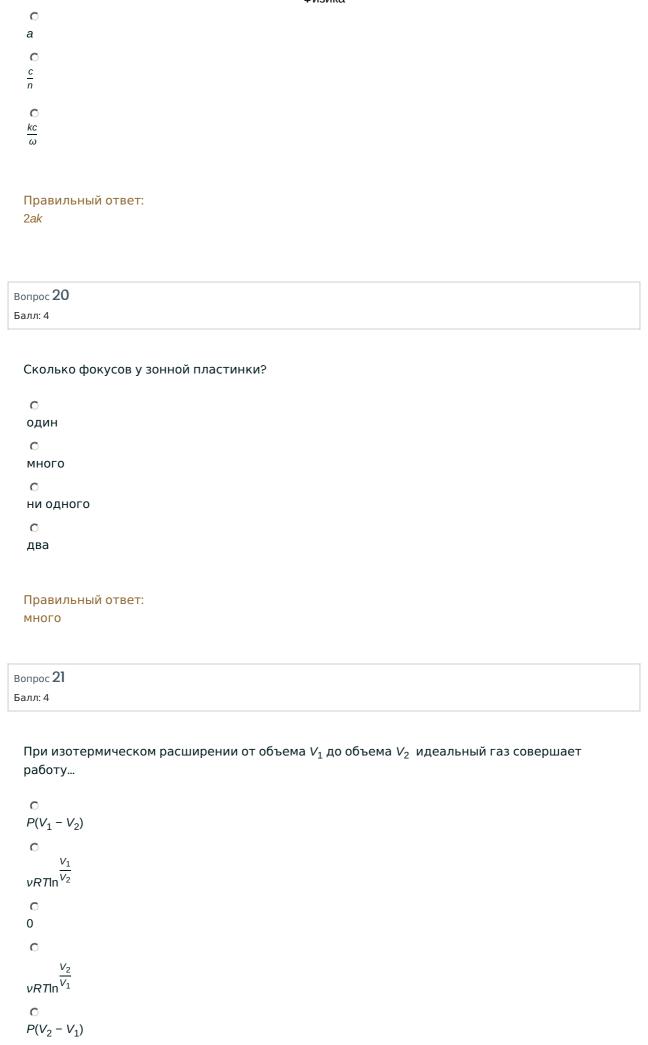
 $2 \cdot ma^2$


Правильный ответ:

 $4 \cdot ma^2$

Вопрос 17

Балл: 4


Какие из показанных на рисунке процессов (1-2, 2-3, 3-1) являются политропическими для идеального одноатомного газа?

0

ни один

С полько 2-3 с только 2-3 с только 2-3 с только 1-2 с т		Ψησηκα
С только 2-3		
все три С только 2-3 С только 1-2 Правильный ответ: все три Вопрос 18 валл: 4 Линейно поляризованный свет с интенсивностью /₀ нормально падает на систему из двух параллельных поляроидов, угол между разрешенными направленями которых составляет 45°. Какова максимально возможная интенсивность света на выходе из второго поляроида? С // 1/2 С // 1/2 Правильный ответ: // 6 // 2 В среде с законом дисперсии ω = ak² (ω - частота, k - волновое число, a > 0 - константа) скорость распространения квазимонохроматического волнового пакета равна С // 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 2 3	1-2 и 3-1	
С только 2-3 С только 1-2 Правильный ответ: все три Вопрос IB важт. 4 Линейно поляризованный свет с интенсивностью I ₀ нормально падает на систему из двух параллельных поляроидов, угол между разрешенными направленями которых составляет 45°, Какова максимально возможная интенсивность света на выходе из второго поляроида? С Io C C C C C C C C C C C C C C C C C C		
только 2-3 С только 1-2 Правильный ответ: все три линейно поляризованный свет с интенсивностью I ₀ нормально падает на систему из двух параллельных поляроидов, угол между разрешенными направлениями которых составляет 45°. Какова максимально возможная интенсивность света на выходе из второго поляроида? С I ₀ 2 C I ₀ 4 C I ₀ 7 Правильный ответ:	все три	
С только I-2 Правильный ответ: все три Попрос IB Валл: 4 Линейно поляризованный свет с интенсивностью I ₀ нормально падает на систему из двух параллельных поляроидов, угол между разрешенными направленчями которых составляет 45°. Какова максимально возможная интенсивность света на выходе из второго поляроида? С I ₀ В С I ₀ С I ₀ В С I ₀		
Только 1-2 Правильный ответ: все три Запл. 4 Линейно поляризованный свет с интенсивностью ℓ ₀ нормально падает на систему из двух параллельных поляроидов, угол между разрешенными направлениями которых составляет 45°. Какова максимально возможная интенсивность света на выходе из второго поляроида? С	только 2-3	
Правильный ответ: все три вопрос 18 валл: 4 Линейно поляризованный свет с интенсивностью l_0 нормально падает на систему из двух параллельных поляроидов, угол между разрешенными направлениями которых составляет 45°. Какова максимально возможная интенсивность света на выходе из второго поляроида? С $\frac{l_0}{l_2}$ С $\frac{l_0}{l_2}$ С $\frac{l_0}{l_2}$ С $\frac{l_0}{l_2}$ Правильный ответ: $\frac{l_0}{l_2}$ В среде с законом дисперсии $\omega = ak^2$ (ω – частота, k – волновое число, $a > 0$ – константа) скорость распространения квазимонохроматического волнового пакета равна С $2ak$		
вопрос 18 валл: 4 Линейно поляризованный свет с интенсивностью I_0 нормально падает на систему из двух параллельных поляроидов, угол между разрешенными направлениями которых составляет 45° . Какова максимально возможная интенсивность света на выходе из второго поляроида? С $\frac{I_0}{2}$ С I_0 С I_0 С I_0 С I_0 С I_0 С I_0 В среде с законом дисперсии I_0 =	только 1-2	
вопрос 18 валл: 4 Линейно поляризованный свет с интенсивностью I_0 нормально падает на систему из двух параллельных поляроидов, угол между разрешенными направлениями которых составляет 45° . Какова максимально возможная интенсивность света на выходе из второго поляроида? С $\frac{I_0}{2}$ С I_0 С I_0 С I_0 С I_0 С I_0 С I_0 В среде с законом дисперсии I_0 =		
вопрос 18 валл: 4 Линейно поляризованный свет с интенсивностью I_0 нормально падает на систему из двух параллельных поляроидов, угол между разрешенными направлениями которых составляет 45° . Какова максимально возможная интенсивность света на выходе из второго поляроида? С $\frac{I_0}{2}$ С I_0 С I_0 С I_0 С I_0 С I_0 С I_0 В среде с законом дисперсии I_0 =	Правильный (OTRET:
Правильный ответ: $\frac{b_0}{2}$ Правильный ответ: $\frac{b_0}{2}$ Порос 19 В среде с законом дисперсии $\omega = ak^2$ (ω – частота, k – волновое число, $a > 0$ – константа) скоростъ распространения квазимонохроматического волнового пакета равна C		
Правильный ответ: $\frac{b_0}{2}$ Правильный ответ: $\frac{b_0}{2}$ Порос 19 В среде с законом дисперсии $\omega = ak^2$ (ω – частота, k – волновое число, $a > 0$ – константа) скоростъ распространения квазимонохроматического волнового пакета равна C		
Правильный ответ: $\frac{b_0}{2}$ Правильный ответ: $\frac{b_0}{2}$ Порос 19 В среде с законом дисперсии $\omega = ak^2$ (ω – частота, k – волновое число, $a > 0$ – константа) скоростъ распространения квазимонохроматического волнового пакета равна C	10	
Линейно поляризованный свет с интенсивностью l_0 нормально падает на систему из двух параллельных поляроидов, угол между разрешенными направлениями которых составляет 45°. Какова максимально возможная интенсивность света на выходе из второго поляроида? $\frac{l_0}{2}$		
параллельных поляроидов, угол между разрешенными направлениями которых составляет 45°. Какова максимально возможная интенсивность света на выходе из второго поляроида? C $\frac{l_0}{2}$ C	эалл: 4 ————————	
параллельных поляроидов, угол между разрешенными направлениями которых составляет 45°. Какова максимально возможная интенсивность света на выходе из второго поляроида? C $\frac{l_0}{2}$ C		
параллельных поляроидов, угол между разрешенными направлениями которых составляет 45°. Какова максимально возможная интенсивность света на выходе из второго поляроида? C $\frac{l_0}{2}$ C	Линейно поля	яризованный свет с интенсивностью $\it I_0$ нормально падает на систему из двух
$\frac{l_0}{l_0}$		
$\frac{l_0}{2}$ $\frac{l_0}{l_0}$ $\frac{l_0}{4}$ $\frac{l_0}{4}$ $\frac{l_0}{4}$ $\frac{l_0}{\sqrt{2}}$ Правильный ответ: $\frac{l_0}{2}$ Запл: 4 В среде с законом дисперсии $\omega = ak^2$ (ω – частота, k – волновое число, $a > 0$ – константа) скорость распространения квазимонохроматического волнового пакета равна $\frac{l_0}{2}$ $\frac{l_0}{2}$	45°. Какова м	аксимально возможная интенсивность света на выходе из второго поляроида?
$\frac{l_0}{2}$ $\frac{l_0}{l_0}$ $\frac{l_0}{4}$ $\frac{l_0}{4}$ $\frac{l_0}{4}$ $\frac{l_0}{\sqrt{2}}$ Правильный ответ: $\frac{l_0}{2}$ Запл: 4 В среде с законом дисперсии $\omega = ak^2$ (ω – частота, k – волновое число, $a > 0$ – константа) скорость распространения квазимонохроматического волнового пакета равна $\frac{l_0}{2}$ $\frac{l_0}{2}$		
$\frac{l_0}{2}$ $\frac{l_0}{l_0}$ $\frac{l_0}{4}$ $\frac{l_0}{4}$ $\frac{l_0}{4}$ $\frac{l_0}{\sqrt{2}}$ Правильный ответ: $\frac{l_0}{2}$ Запл: 4 В среде с законом дисперсии $\omega = ak^2$ (ω – частота, k – волновое число, $a > 0$ – константа) скорость распространения квазимонохроматического волнового пакета равна $\frac{l_0}{2}$ $\frac{l_0}{2}$		
С l_0 С 0 С $\frac{l_0}{4}$ С $\frac{l_0}{4}$ С $\frac{l_0}{\sqrt{2}}$ Правильный ответ: $\frac{l_0}{2}$ Залл: 4		
l_0 С 0 С $\frac{l_0}{4}$ С $\frac{l_0}{4}$ С $\frac{l_0}{\sqrt{2}}$ Правильный ответ: $\frac{l_0}{2}$ голрос 19 галл: 4	<u>'0</u> 2	
l_0 С 0 С $\frac{l_0}{4}$ С $\frac{l_0}{4}$ С $\frac{l_0}{\sqrt{2}}$ Правильный ответ: $\frac{l_0}{2}$ Зала: 4		
$\frac{C}{l_0}$ $\frac{l_0}{4}$ $\frac{l_0}{4}$ $\frac{l_0}{\sqrt{2}}$		
$\frac{l_0}{l_0}$ $\frac{l_0}{4}$ $\frac{l_0}{l_0}$ $\frac{l_0}{\sqrt{2}}$ $\frac{l_0}{\sqrt$		
$\frac{b_0}{4}$ $\frac{b_0}{\sqrt{2}}$ Правильный ответ: $\frac{b_0}{2}$ Вопрос 19 Залл: 4 В среде с законом дисперсии $\omega = ak^2$ (ω – частота, k – волновое число, $a > 0$ – константа) скорость распространения квазимонохроматического волнового пакета равна С 2 ak		
$\frac{l_0}{4}$ С $\frac{l_0}{\sqrt{2}}$ Правильный ответ: $\frac{l_0}{2}$ Вопрос 19 $\frac{l_0}{2}$ В среде с законом дисперсии $\omega = ak^2$ (ω – частота, k – волновое число, $a > 0$ – константа) скорость распространения квазимонохроматического волнового пакета равна С $\frac{l_0}{2ak}$		
С $\frac{l_0}{\sqrt{2}}$ Правильный ответ: $\frac{l_0}{2}$ Вопрос 19 балл: 4 В среде с законом дисперсии $\omega = ak^2$ (ω – частота, k – волновое число, $a>0$ – константа) скорость распространения квазимонохроматического волнового пакета равна С $2ak$		
$\frac{l_0}{\sqrt{2}}$ Правильный ответ: $\frac{l_0}{2}$ Вопрос 19 балл: 4 В среде с законом дисперсии $\omega = ak^2$ (ω – частота, k – волновое число, $a > 0$ – константа) скорость распространения квазимонохроматического волнового пакета равна С $2ak$	4	
$\frac{l_0}{\sqrt{2}}$ Правильный ответ: $\frac{l_0}{2}$ Вопрос 19 балл: 4 В среде с законом дисперсии $\omega = ak^2$ (ω – частота, k – волновое число, $a > 0$ – константа) скорость распространения квазимонохроматического волнового пакета равна С $2ak$	C	
Правильный ответ: $\frac{l_0}{2}$ В сопрос 19 балл: 4 В среде с законом дисперсии $\omega = ak^2$ (ω – частота, k – волновое число, $a > 0$ – константа) скорость распространения квазимонохроматического волнового пакета равна С $2ak$		
$\frac{l_0}{2}$ В среде с законом дисперсии $\omega = ak^2$ (ω – частота, k – волновое число, $a > 0$ – константа) скорость распространения квазимонохроматического волнового пакета равна С $2ak$	√2	
$\frac{l_0}{2}$ В среде с законом дисперсии $\omega = ak^2$ (ω – частота, k – волновое число, $a > 0$ – константа) скорость распространения квазимонохроматического волнового пакета равна С $2ak$		
$\frac{l_0}{2}$ В среде с законом дисперсии $\omega = ak^2$ (ω – частота, k – волновое число, $a > 0$ – константа) скорость распространения квазимонохроматического волнового пакета равна С $2ak$		
Вопрос 19 балл: 4 В среде с законом дисперсии $\omega = ak^2$ (ω – частота, k – волновое число, $a > 0$ – константа) скорость распространения квазимонохроматического волнового пакета равна С 2 ak		OTBET:
В среде с законом дисперсии $\omega = ak^2$ (ω – частота, k – волновое число, $a > 0$ – константа) скорость распространения квазимонохроматического волнового пакета равна С 2 ak	2	
В среде с законом дисперсии $\omega = ak^2$ (ω – частота, k – волновое число, $a > 0$ – константа) скорость распространения квазимонохроматического волнового пакета равна С 2 ak		
В среде с законом дисперсии $\omega = ak^2$ (ω – частота, k – волновое число, $a > 0$ – константа) скорость распространения квазимонохроматического волнового пакета равна С 2 ak	10	
В среде с законом дисперсии $\omega = ak^2$ (ω – частота, k – волновое число, $a > 0$ – константа) скорость распространения квазимонохроматического волнового пакета равна С 2 ak		
скорость распространения квазимонохроматического волнового пакета равна С 2ak С	oa/I/I. 4	
скорость распространения квазимонохроматического волнового пакета равна С 2ak С		
скорость распространения квазимонохроматического волнового пакета равна С 2ak С	В среде с зак	оном дисперсии $\omega = ak^2\big(\omega$ - частота, k - волновое число, $a>0$ - константа $\big)$
2ak C		
2ak C		
С		
	C ak	

vRTln $\frac{V_2}{V_1}$

Вопрос 22

Балл: 4

Пусть центр Луны (шар радиусом r) движется по круговой орбите радиуса R вокруг центра Земли. Кроме того, Луна вращается вокруг собственной оси симметрии, так, что всегда обращена одной стороной к Земле. Определите расстояние от центра Луны до её мгновенной оси вращения.

0

R + r

0

R - r

0

w

C R

Правильный ответ:

R

Вопрос **23**

Балл: 4

Как влияет наличие атмосферы Земли на продолжительность светового дня?

O

зависит от широты

0

уменьшает

0

зависит от времени года

C

не влияет

C

увеличивает

Правильный ответ:

увеличивает

Вопрос **24**

Изменение каких характеристик падающего излучения наблюдается при комптоновском рассеянии?

0

сохранение частоты фотона вследствие упругого рассеяния

0

поглощение фотона материалом катода с вылетом нерелятивистского фотоэлектрона

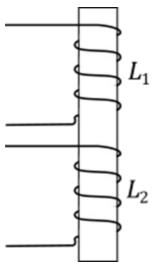
уменьшение длины волны света вследствие снятия возбуждения атома-мишени

0

уменьшение амплитуды световой волны при сохранении ее частоты вследствие частичного поглощения в веществе

0

уменьшение частоты при рассеянии


Правильный ответ:

уменьшение частоты при рассеянии

Вопрос 25

Балл: 4

Максимально возможный коэффициент взаимной индукции катушек, намотанных в одном направлении на общий ферромагнитный сердечник (см. рис.), равен

$$\frac{C}{\sqrt{L_1 \cdot L_2}}$$

0

 $L_1 + L_2$

0

0

 $L_1 + L_2$

_

		K2	

$L_1 - L_2$		Физика	
Правильный ответ $\sqrt{L_1\cdot L_2}$	г:		