
RESEARCH ARTICLE SUMMARY
◥

NEUROSCIENCE

Neural mechanisms resolving exploitation-
exploration dilemmas in the medial prefrontal cortex
Philippe Domenech1,3,4, Sylvain Rheims5,6, Etienne Koechlin1,2,7*

RESEARCH

Domenech et al., Science 369, 1076 (2020) 28 August 2020 1 of 1

1Institut National de la Santé et de la Recherche Médicale
(INSERM), Paris, France. 2Université Paris Sciences et Lettres
(PSL) Research University, Ecole Normale Supérieure, Paris,
France. 3Paris Brain Institute, Paris, France. 4APHP, Groupe
Hospitalier Henri Mondor, DMU Psychiatry, Department of
Neurosurgery, Université Paris Est Créteil, Créteil, France.
5Department of Functional Neurology and Epileptology, Hospices
Civils de Lyon, University of Lyon, Lyon, France. 6Lyon’s
Neuroscience Research Center, INSERM-U1028, CNRS-UMR 5292,
Lyon, France. 7Université Pierre et Marie Curie, Paris, France.
*Corresponding author. Email: etienne.koechlin@upmc.fr
Cite this article as P. Domenech et al., Science 369,
eabb0184 (2020). DOI: 10.1126/science.abb0184

READ THE FULL ARTICLE AT
https://doi.org/10.1126/science.abb0184

Stim

N
l a

ct
i

 fr
e

cy
 (H

Action outcome
onsets

x=-10

vmPFC



RESEARCH ARTICLE
◥

NEUROSCIENCE

Neural mechanisms resolving exploitation-
exploration dilemmas in the medial prefrontal cortex
Philippe Domenech1,3,4, Sylvain Rheims5,6, Etienne Koechlin1,2,7*

E
veryday life frequently necessitates arbi-
tration between the pursuit of an ongoing
action plan with possible adjustments
versus the exploring of a new plan. Resolv-
ing this so-called exploitation-exploration

dilemma is critical for efficient adaptive behav-
ior in uncertain, changing, and open-ended every-
dayenvironments (1,2) (supplementarynote), and
it primarily involves the medial prefrontal cortex
(mPFC) (3–8). Human neuroimaging shows that
activation in the ventromedial PFC (vmPFC)
reflects the subjective value of the ongoing
plan according to action outcomes,whereas the
dorsomedial PFC (dmPFC) exhibits activation
when this value drops and the plan is aban-
doned for exploring new ones (6). However, the
neural mechanisms that resolve the dilemma
andmake the decision to exploit versus explore
remain largely unknown. According to the clas-
sical view, the brain processes information in a
feed-forwardmanner from stimuli to responses;
namely, the vmPFC and dmPFC implement a
bottom-up, reactive process evaluating the on-
going plan only after experiencing action out-
comes to decide between further exploiting
versus exploring. Alternatively, however, pre-
dictive coding that has been proposed for per-
ception (9–11) could extend to the prefrontal
executive function. Accordingly, the vmPFC and
dmPFCmight implement a top-down, proactive

process wherein the ongoing plan is evaluated
before experiencing action outcomes to pro-
spectively code upcoming action outcomes as
either learning signals to improve the ongoing
plan or as potential triggers to explore new
plans rather than exploit the ongoing plan.
We addressed this issue by recording neuro-
nal activity in six participantswhile theywere
performing a task that induced systematic
exploitation-exploration dilemmas in an un-
certain, changing, and open-ended environ-
ment (2, 6) (Fig. 1).

Experimental paradigm

Participants were patients with drug-resistant
focal epilepsy who had been stereotactically im-
planted with multilead electroencephalography
(EEG) depth electrodes (12, 13), which passed
notably through the vmPFC and dmPFC (Fig.
1A and table S1). Participantswere all eventually
diagnosed with temporal or parietal lobe epi-
lepsy with no impact observed on the PFC (see
theMaterials andmethods section). Participants
responded to visually, successively presented
digits and searched for digit-response combi-
nations by trial and error. Feedbackwas binary
(positive versus negative) and stochastic (10%
noise). Combinations changed episodically and
unpredictably (every 33 to 57 trials), thereby
dividing trial series into successive latent epi-
sodes associated with distinct combinations.
Thus, the task induced participants to con-
stantly arbitrate according to feedback between
two options: (i) staying with the same pre-
sumed combination by possibly adjusting it or
(ii) abandoning it to explore new combinations.
In every trial, participants’ responses could be
correct (chance level, 25%), perseverating (in-
correct in the current episode but correct in the
preceding episode; chance level, 25%), or an-
cillary (neither correct nor perseverative; chance

level, 50%) (Materials and methods). Overall,
participants performed notably below the sta-
tistical optimum but similarly to healthy partic-
ipants who had been previously tested in the
same task (2, 6). Correct response rates in-
creased from ~5% at episode onsets to ~80%,
perseverative response rates decreased from
~80% at episode onsets to ~5% after 25 trials,
and ancillary response rates increased from
~15% at episode onsets, peaked to ~40% about
6 trials later, and returned to ~15% about
25 trials later (Fig. 2A).

Identifying covert switches into exploration

To determinewhen participants switched from
exploiting presumed combinations to explor-
ing new ones, we leveraged previous studies
that have shown that these switches derive
from an online algorithm approximating the
optimal adaptive process (2, 6). According to
this model, presumed combinations form
action plans associating digits, responses,
and expected feedback. These plans are mon-
itored online: The algorithm probabilistically
infers the reliability value of presumed plans—
i.e., the belief li that plan i matches the cur-
rent true combination—given observed action
outcomes and the possibility that no mon-
itored plans match. When plan i0 is more
likely matching than not matching the cur-
rent combination—i.e.,li0 > 1! li0 (or equiv-
alently,li0 > 0:5)—the plan is said to be reliable
and the others are necessarily unreliable (be-
cause Sili < 1). The algorithm is then in the
exploitation state: The reliable plan consti-
tutes the actor that guides ongoing behavior
and learns from feedback through reinforce-
ment learning (RL) processes.When the actor
becomes unreliable and all other monitored
plans remain unreliable (all li < 0.5), the al-
gorithm switches into the exploration state: A
new presumed plan is formed from mixing
previously learned plans stored in long-term
memory, and this new plan is used as a pro-
visional actor guiding behavior and learning
from feedback. The algorithmeventually returns
to the exploitation state, when this provisional
actor or another monitored plan becomes re-
liable. In the former case, the provisional actor is
then consolidated in long-termmemory, where-
as it is disbanded in the latter case (see supple-
mentary text for the full model description).
This model closely fitted and reproduced

participants’ performances (Fig. 2A), as has
been explained and shown in previous studies
(2, 6, 14). The model especially reveals when
participants covertly switched from exploita-
tion to exploration. After episode changes, the
model switched, as expected, from exploitation
to exploration at variable time points ranging
from two to eight trials after episode onsets
[95% confidence interval (CI)]. In these switch
trials, feedback induced posterior actor reliability
to decrease and drop below the reliability
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threshold (l = 0.5), which led the model to
start exploring in the subsequent trials. Re-
aligning both the model’s and participants’
performances on switch trials rather than
episode onsets (Fig. 2B) shows that both the
model’s and participants’ responses were un-
affected by episode changes up to these switch
trials: Most responses remained perseverative
(~85%), whereas residual responses were ran-
domly distributed across ancillary and correct
responses (~10 and ~5%, respectively). By con-
trast, in trials immediately after switch trials,
both the model’s and participants’ persevera-
tive responses abruptly dropped off to ~40%,
whereas ancillary and correct responses abruptly
increased close to their chance level (~40 and
~20%, respectively) (Fig. 2B). This abrupt al-
gorithmic transition was also independently
observed in participants’ reaction times, which

suddenly increased by ~100 ms in the trials
immediately after switch trials (Fig. 2B)—an
effect that could neither be ascribed to in-
creases of response shifts after switch trials
(fig. S5) nor to the occurrence of unexpected
feedback (fig. S6). Thus, in switch trials, feed-
back induced participants to switch away from
their ongoing plan to explore new plans in the
next trials. In stay trials, by contrast, themodel
reveals that participants’ behavior instead de-
rived from RL processes—i.e., participants
stayed with the same actor plan that adapted
to external contingencies throughRLprocesses—
particularly when eventually returning from
exploration to exploitation. Overall, switch trials
occurred in the model contingent upon poste-
rior rather than prior actor reliability relative to
the actual feedback that participants observed.
Switch trials predicted that participants behav-

iorally switched into exploration in the trials
that immediately followed. Accordingly, par-
ticipants covertly switched into exploration
posterior to this feedback and before partic-
ipants’ responses that immediately followed.

Neural mechanisms inferring actor reliability

Using the standard time-frequency decompo-
sition (15), we investigatedwhether local neural
processing in the vmPFC and/or the dmPFC
probabilistically infers and tracks actor relia-
bility predicted by the model. We extracted
neural activity in the high-gamma frequency
band (50 to 150 Hz) reflecting local neuronal
spiking (16) at each time point within the trials
(Materials and methods). We entered this ac-
tivity into a single multiple regression analysis
performed over all trials that included model
variables as within-subject regressors, includ-
ing the following: (i) prior and posterior actor
reliability relative to feedback, orthogonalized
in that order so that the second regressor cap-
tures only reliability updates from feedback;
(ii) the same reliability regressors for alterna-
tive plans monitored along the actor according
to the model; and (iii) chosen values, i.e., the RL
value of chosen actions, which, as feedback were
binary, also measured positive feedback likeli-
hoods involved in computing posterior from
prior actor reliability. Additional regressorswere
included to remove potential confounding fac-
tors (Materials and methods).
vmPFC high-gamma activity linearly encoded

prior actor reliability along virtually the whole
trial epoch including intertrial intervals (Fig. 3).
Moreover, ~300msafter participants’ responses,
this activity further started encoding chosen
values linearly. This encoding gradually in-
creased up to feedback occurrences and then
decreased afterward, which indicates that the
vmPFC also anticipated when feedback oc-
curred. Finally, ~350ms after feedback occur-
rences, the activity further started encoding
posterior actor reliability linearly. We detected
no significant correlations with the reliability
of alternative strategies (fig. S7), confirming the
vmPFC specific role in monitoring the action
plandriving ongoingbehavior (6). In thedmPFC
by contrast, high-gamma activity was uncorre-
lated with any preceding regressors (Fig. 3 and
fig. S7). In both regions, finally, we found no
significant correlations with neural activity in
other frequency bands.

vmPFC and the prospect of exploration

To understand how monitoring of actor re-
liability leads to switch from exploitation to
exploration, we compared neural activity locked
on feedback onset between switch and stay
trials. In the vmPFC, switch compared with
neighboring stay trials elicited only a significant
increase of neural activity in beta-band frequen-
cies (13 to 30 Hz), which started at ~350 ms,
peaked ~70 ms before feedback onset, and
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Fig. 1. Experimental protocol. (A) Localization of transverse electrodes within the medial PFC across
participants, reconstructed on a canonical T1-weighted sagittal MRI brain slice [Montreal Neurological
Institute (MNI) coordinate: x = −10]. Subgenual (yellow) and dorsogenual (blue) electrodes were ascribed to
the vmPFC and dmPFC, respectively. The vmPFC and dmPFC comprised N = 13 and N = 12 electrode
contacts, respectively. See fig. S1 for exact localizations in every participant. (B) Behavioral protocol. Trials
started with the display of one out of three possible stimuli (digits; duration: 800 ms). Participants responded
by pressing one out of four response buttons. Participants then received a positive or negative feedback
(digits turned green or red, respectively; duration: 800 ms), depending on the current correct digit-button
combination. Stimuli-feedback asynchrony was jittered (range: 400 ms). (C) Episode structure of the
behavioral protocol. Current correct digit-button combinations episodically changed after an unpredictable
number of trials, thereby defining successive latent episodes. There were no overlaps in digit-button
associations (Si→Aj) between two successive episodes.
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vanished ~150 ms after feedback onset (Fig. 4A).
This prefeedback effect is consistent with the
documented role of beta-band activity in anti-
cipating upcoming stimuli (17–19). The effect
abruptly appeared in switch trials and was
neither present in previous and subsequent
neighboring trials (Fig. 4B) nor in stay trials
that lead to either negative or positive feedback
(Fig. 5). Thus, the effect was unlikely to reflect
differences in reward or feedback expectations
between stay and switch trials: In switch and
immediately preceding stay trials, positive feed-
backs were equally frequent and chosen values
(or feedback likelihoods) were virtually identi-
cal (Fig. 4D). The effect was also unlikely to re-
flect actor reliability, which gradually decreased,
whereas beta-band activity remained constant
along stay trials preceding switch trials (Fig.
4D). We also dismissed the possibility that this
prefeedback effect reflects the commitment to
switch into exploration. The analysis of behav-
ioral performances reported above indicates
that participants covertly switched into explora-
tion contingent upon and, consequently, poste-
rior to these feedbacks. However, this analysis

indicates that in switch compared with stay
trials, the following prefeedback event occurred:
Prior actor reliability monitored in the vmPFC
(see Fig. 3) approached the 0.5 reliability thresh-
old closely enough that upcoming feedback
could cause posterior actor reliability to cross
the threshold and trigger exploration. We there-
fore concluded that the prefeedback effect
observed in the vmPFC reflects this event—
namely, the sudden possibility that upcoming
feedback may cause posterior actor reliability
to cross the threshold or, equivalently, the fact
that prior actor reliability is close enough to
the threshold. Accordingly, the vmPFC appears
to evaluate actor reliability relative to the thresh-
old before feedback occurrences. This prospec-
tively flags upcoming feedback in switch trials as
potential triggers committing to exploration
rather than as regular learning signals serving
to adjust the ongoing actor plan.

dmPFC responses to exploration triggers
versus learning signals

In the dmPFC, by contrast, switch compared
with neighboring stay trials exhibited a signif-

icant differential neural activity only after feed-
back onset. The activity started at feedback
onset and lasted up to ~200ms after feedback
offset (i.e., lasting ~1000 ms). This postfeed-
back effect occurred in theta-band frequencies
(4 to 8Hz) and slightly extended to alpha-band
frequencies (8 to 12 Hz) (Fig. 4C). Although
this postfeedback activity remained unchanged
in stay trials preceding and after switch trials,
it abruptly decreased in switch trials (Fig. 4B)
(20, 21). For the same reasons as above, this
abrupt postfeedback effect could neither be
ascribed to any variations in reward-feedback
expectations or in actor reliability across stay
and switch trials (Fig. 4D) nor to differences
in reward prediction errors (RPEs), because
these errors were virtually identical in switch
and immediately preceding stay trials (Fig.
4D). Moreover, actor reliability was unrelated
to dmPFC neural activity and was updated in
the vmPFC only ~350ms after feedback onset.
Consequently, the effect emerging at feedback
onset was unlikely to reflect a bottom-up, re-
active process comparing posterior actor reli-
ability with the 0.5 reliability threshold and
leading to the decision to explore in switch
trials. However, when this dmPFC postfeed-
back effect emerged at feedback onset, the
vmPFC prefeedback effect started declining.
This suggests that the vmPFC proactively con-
figured the dmPFC to process feedback differ-
ently in stay and switch trials—i.e., as learning
signals versus exploration triggers, respectively.
Consistent with this interpretation, the vmPFC
prefeedback effect arose in beta-band frequen-
cies known to convey top-down, predictive
neural processing (22–24), whereas the dmPFC
postfeedback effect arose in theta-band fre-
quencies considered as reflecting the configu-
ration of PFC neural networks underpinning
behavioral control (25–28).
In stay trials, dmPFC neural responses to

positive and negative feedback exhibited a
single common feature starting at feedback
onset—namely, a strong increased activity in
alpha-band frequencies that vanished ~600ms
later (Fig. 6A). dmPFC-centered alpha-band
activities are thought to drive the inhibition
of neural representations that are irrelevant
to ongoing behavior (29–33), thereby favoring
the maintenance of the ongoing actor plan
and its adjustment in response to feedback.
Consistently, dmPFC neural responses to posi-
tive and negative feedback exhibited a second
common feature from ~200 to ~600 ms after
feedback onset, which corresponded to the
signature of RL processes—namely, a strong
increase of high-gamma activity that correlated
with unsigned RPEs (i.e., the discrepancy be-
tween chosen values and actual feedback) (34)
(Fig. 6, A, C, and D). Thus, dmPFC neuronal
responses to feedback in stay trials transiently
encoded unsigned RPEs scaling RL processes.
As expected, this postfeedback RPE encoding
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Fig. 2. Behavioral performances. (A) Proportion of correct, ancillary, and perseverative responses
(summing up to 1) from participants and the model, according to the number of trials after episode onsets
(i.e., combination changes). Ancillary and perseverative responses are both incorrect, but perseverative
responses further correspond to correct responses in the preceding episode. Both the model and participants
adapted much faster to combination changes than a Rescorla and Wagner’s RL model that was fitted on
participants’ data (orange). (B) Participants’ responses and model predictions (top) along with participants’
reaction times (bottom) realigned on switch trials occurring in the model rather than on episode onsets.
Orange lines show RL predictions. All model predictions are computed in every trial given participants’
responses in previous trials. Error bars represent SEMs across participants. See Materials and methods for
modeling details and tables S2 and S3 for model parameters.
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in the dmPFC was functionally connected with
the prefeedback encoding of chosen values that
we observed in the vmPFC (see the Psycho-
physiological interactions section in the Mate-
rials andmethods; Fig. 7). vmPFC prefeedback
and dmPFC postfeedback high-gamma activ-
ities were indeed correlated, and this cross-
temporal correlation increased with chosen
values (Fig. 7). This indicates that the chosen
value representation in the vmPFC is trans-
mitted to the dmPFC to subserve RPE com-
putations. Consistently, the cross-temporal
correlation further decreased when unsigned
RPEs increased [i.e., decreased with the dis-
crepancy between expected feedbacks (chosen
values) encoded in the vmPFC and actual feed-
backs processed in the dmPFC] (Fig. 7). By
contrast, the cross-temporal correlation was
unrelated to actor reliability (Fig. 7), which is
in agreement with the absence of any dmPFC
activity related to action plan reliability (Fig. 3
and fig. S7).

In switch trials, this cascade of dmPFC
responses to feedback was disrupted. First,
dmPFC theta-band activity in switch compared
with stay trials decreased from feedback onset;
second, the dmPFC alpha-band activity was
notably reduced and rapidly vanished ~250 ms
later (Fig. 6, A and B); third, this suppression
was accompanied by a drop-off of dmPFC high-
gamma activity observed in stay trials from
~200 to ~600ms after feedback onset, which
further ceased coding for any RPEs (Fig. 6, A
and D). Thus, the dmPFC processed feedback
in switch trials unlike learning signals, with the
alpha-band response suppression presumably
releasing the inhibition bearing upon neural
representations that are irrelevant to the on-
going actor plan and preventing RL processes
from adjusting this action plan. The dmPFC thus
appears to process feedback in switch trials as
favoring the covert emergence of neural repre-
sentations forming new action plans to explore
from ~250 ms after feedback onset.

Resolving exploitation-exploration dilemmas
through predictive coding
vmPFC neural activity in gamma-band fre-
quencies infers and tracks the reliability of the
ongoing action plan according to action out-
comes. After the action, it proactively flags
(through beta-band frequencies) upcoming
outcomes as either learning signals to better
exploit this plan or potential triggers to ex-
plore new ones. According to this functional
construct, dmPFC activity in theta-band fre-
quencies appears to reflect the dmPFC con-
figuration to respond to action outcomes. The
dmPFC response to outcomes that are flagged
as actual triggers then appears to realize the
switch into exploration through the suppres-
sion of neural activity in alpha-band frequencies.
This favors the emergence of neural representa-
tions that form new action plans and, through
inhibiting dmPFC high-gamma activity–scaling
RL processes, prevents the ongoing plan from
adjusting through RL. Thus, the medial PFC
resolves exploitation-exploration dilemmas
through a top-down, predictive coding process
from the vmPFC to the dmPFC. This predictive
coding process has the advantage of speeding
up the abandonment of the ongoing action
plan and preventing action outcomes that trig-
ger exploration from inappropriately acting as
learning signals.
Predictive coding, which was originally de-

veloped to describe perceptual cortical processes
(9–11, 35), may also play a role in prefrontal ex-
ecutive processes. In perceptual predictive
coding, observers’ prior beliefs about a scene
alter how they perceive the scene. Our find-
ings suggest that within the prefrontal exec-
utive system, predictive coding proactively
alters the functional signification of behav-
ioral events according to the agents’ beliefs
about their own behavior.

Materials and methods
Participants

Six patients with drug-resistant focal epilepsy
(one female; age range: 25 to 49 years old;
see table S1) from theDepartment of Functional
Neurology and Epileptology at University Hos-
pital of Lyon participated in the present study.
The participants belonged to a group of pa-
tients, which were stereotactically implanted
with intracranial EEG depth electrodes to
locate epileptic foci because noninvasive meth-
ods were unsuccessful (13, 36). Implantation
siteswere selected according to clinical require-
ments, independent of the present study. We
recruited the patientswith at least one electrode
implanted in the vmPFC and who were even-
tually diagnosed with temporal lobe (n = 5) or
parietal lobe (n = 1) epilepsy with no electro-
physiological impacts observed in the PFC. The
study (DSI-SEEG protocol, NCT02869698) was
approved by the Institutional Review Board
(ANSMno.2009-A00239-48)andNationalFrench

Domenech et al., Science 369, eabb0184 (2020) 28 August 2020 4 of 9

Fig. 3. Neural encoding of model variables in the medial PFC. (A) Time courses of partial correlation
coefficients (betas) at each time point within trials between high-gamma neural activity (local field potentials
>40 Hz), averaged over electrode contacts within the dmPFC and vmPFC and model variables (prior and
posterior actor reliability, chosen values) derived from multiple regression analyses across all trials. Time
courses are locked on stimulus onsets (left), participants’ responses (middle), and feedback onset (right).
Red vertical dashed lines show the average onsets of trial events. Shaded areas represent SEMs across
contacts. Thick horizontal colored bars indicate statistical significance at P < 0.05, corrected for multiple
comparisons at cluster level. The dmPFC exhibited no significant correlations. Resp, response; Stim, stimulus;
FB, feedback. (B) vmPFC high-gamma activities (Z-scored for each electrode contact across trials before
averaging) averaged over specific time windows [dashed boxes in (A)] and plotted against prior actor
reliability (left), chosen values (middle), and posterior actor reliability (right). Error bars are SEMs across
electrode contacts. Linear regression coefficients, r, are shown with P values. See fig. S2 for data from one
vmPFC individual contact.
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science ethic committee (CPP 09-CHUG-12,
no. 0907). All participants volunteered to par-
ticipate and provided written informed con-
sent before participation.

Intracranial electroencephalography

We collected intracranial electroencephalog-
raphy (iEEG) recordings from the six patients.
They were chronically implanted with 12 to 15
stereotacticmultilead depth electrodes for 2 to

3 weeks. These semirigid electrodes (DIXI
Medical Instrument) have a diameter of 0.8mm
and, depending on the target structure, con-
sisted of 5 to 15 linearly arranged contact leads
(2 mm wide), with a 1.5-mm gap between two
consecutive leads. Overall, we recorded from
929 contacts distributed across 81 depth elec-
trodes, among which 21 depth electrodes (185
contacts) were located in the PFC. All these
electrodes were implanted orthogonal to the

interhemispheric plane with the deepest con-
tacts located in the medial PFC. Over the six
patients, 13 electrode contacts were localized
in the vmPFC and 12 in the dmPFC (see Fig. 1A
and fig. S1). T1-weighted anatomical magnetic
resonance imaging (MRI) [three-dimensional
gradient-recalled echo (3D GRE); resolution,
1 mm3; matrix size, 256 voxels by 256 voxels]
were acquired before and after surgery. Exact
contact locations were manually determined
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Fig. 4. Medial PFC neural activity associated with switch compared with stay trial feedback. (A and
C) Time-frequency analyses (T-value maps) of neural local field potentials in switch compared with
neighboring stay trials (from −2 to +2 trials relative to switch trials) locked on feedback and averaged over
vmPFC (A) and dmPFC (C) electrode contacts. Power increases (positive T values) and decreases (negative
T values) are shown in red and blue, respectively. T-value maps are thresholded at P < 0.05, corrected
for multiple comparisons (cluster-level, family-wise error corrections). Black contours delimit statistical
thresholds from P < 0.05 to P < 5.0 × 10−6. Vertical shaded areas indicate onset windows of stimuli from the
next trial. See fig. S3 for the unthresholded maps. (B) Power amplitudes in switch and neighboring stay trials
averaged over the vmPFC beta-band and dmPFC theta-band clusters shown in (A) and (C), respectively.
Power amplitudes were Z-scored in each electrode contact before averaging. Error bars are SEMs over trials.
(D) Signed prediction errors, chosen values, proportion of positive feedback (FB+), and prior actor reliability
in switch and neighboring stay trials. In switch trials, posterior actor reliability dropped below the 0.5
reliability threshold (blue cross), and a new actor is formed to guide exploration in subsequent trials. Error
bars are SEMs over participants.

Fig. 5. vmPFC neural activity associated with
response feedback. Time-frequency analyses
(T-value maps) of vmPFC local field potentials
relative to trial grand averages (from −2 s to +5 s
relative to stimulus onsets), averaged across
electrode contacts and locked on feedback onset in
stay (top: positive feedback; middle: negative
feedback) and switch (bottom) trials. Switch trials
comprised 10% positive and 90% negative
feedback. Maps are thresholded at P < 0.05,
corrected for multiple comparisons (cluster-wise,
family-wise error corrections). Increases (positive
T values) and decreases (negative T values) are
shown in red and blue, respectively. Black contours
delimit statistical thresholds from P < 0.05 to
P < 0.000005. Vertical shaded areas indicate
onset windows of stimuli from the next trial. See
fig. S4 for the unthresholded maps.
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from the position of the corresponding artifact
relative to the main anatomical landmarks
on the postsurgery MRI. We recorded iEEG
~8 days after surgery (8.6 days ±1.4 SEM; see
table S1) using a 128-channels video-EEGmon-
itoring system (Micromed; sampling rate, 512Hz).
iEEG data were bandpass filtered online (0.1
to 200 Hz).

Experimental paradigm
The participants performed a variant of the
Wisconsin Card Sorting Test, in which they
learned combinations between digits and re-
sponse buttons by trial and error. Combina-
tions changed episodically and unpredictably.
The experimental paradigm is identical to that
used in previous studies testing healthy partic-

ipants within and outside MRI scanners (2, 6).
In the present study,we only adjusted the event
timing and jittering to iEEG constraints.
Four white boxes representing four response

buttons were displayed on a black background
at the center of a screen (Fig. 1B). Each trial
started with the display of a white digit (out
of three possible digits) in every box during
800 ms. The patients responded to this stim-
ulus by pressing one of four buttons (response
box: Cedrus Lumina, LU444-RH). Patients had
to use the same finger to press the same button
throughout the experiment. If a response oc-
curredwithin 1500ms from the stimulus onset,
all displayed digits disappeared between 1800
and 2200 ms after the stimulus onset, except
the digit displayed in the box related to the
pressed button: If the participant pressed the
correct button, this digit instead turned green
with 90% probability (positive feedback) and
turned redwith 10% probability (negative feed-
back). If the participant pressed another but-
ton, positive and negative feedback probabilities
were reversed. Response feedbacks were thus
stochastic. If no responses occurred within
1500 ms from the stimulus onset, all digits dis-
appeared and were replaced by an uninfor-
mative, neutral feedback (dashes in every box).
Response feedbacks were presented during
800ms. After 800ms, the feedback disappeared,
leaving the four boxes empty. The next trial
started after a delay of 1200 to 1600ms from the
feedback onset. Participants were explicitly in-
structed that in every trial, each digit was as-
sociated with only one correct response button,
and that distinct digits were associated with
distinct responses (see Fig. 1C). Participants
were also told that response feedbacks were
not fully reliable (they were however not in-
formed about the exact feedback probabilities).
Finally, participants were informed that digit-
response combinations could change episodically
and unpredictably. No additional instructions
were provided to participants. We refer to series
of trials with no combination changes as epi-
sodes. Episode lengths pseudorandomly ranged
between 33 and 57 trials. When combinations
changed, every digit-response association was
changed (Fig. 1C)
Overall, the experiment included two be-

havioral sessions administered on successive
days. Each session included 1011 trials com-
prising 24 episodes. Each session included five
short breaks occurring within episodes. After
each break, the last digit-response combina-
tionwas used again during six to nine trials, so
that breaks were unrelated to combination
changes (participants were explicitly instructed
that breaks were unrelated to combination
changes). Stimuli were pseudorandomly drawn
from the set {1,3,5} for one session and {2,4,6}
for the other session, counterbalanced across
participants. In one session, three distinct digit-
response combinations were pseudorandomly
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Fig. 6. dmPFC neural activity associated with response feedback. (A) Same as in Fig. 5 but for local field
potentials averaged across dmPFC electrode contacts. See fig. S4 for the unthresholded maps. (B) Time
courses of dmPFC alpha-band power in switch compared with neighboring stay trials (from −2 to +2 trials
relative to switch trials) locked on feedback onset. (C) Correlation between dmPFC high-gamma neural
activity and unsigned RPEs plotted against time from feedback onset. Shaded areas in (B) and (C) are SEMs
across dmPFC electrode contacts. Horizontal black bars in (B) and (C) indicate statistical significance at
P < 0.05, corrected for multiple comparisons (cluster-wise, family-wise error correction). (D) High-gamma
activity over time window shown in (C) (orange) plotted against RPEs in stay and switch trials. Error bars are
SEMs across binned trials. Lines show second-order polynomial regressions in stay trials (df = 340; linear
P = 0.34; quadratic P < 0.0001) and in switch trials (df = 212; both linear and quadratic P > 0.89).
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repeated over episodes. In the other session,
24 distinct digit-response combinations were
used across the 24 episodes (no combination
repetitions). Order of sessions were counter-
balanced across participants.
The day before the first session, the partic-

ipants performed a short training session under
supervision of the experimenter with a simpli-
fied protocol, using only two shapes (instead of
three numbers) and two buttons (instead of
four). This was done to ensure that participants
correctly understood the task and experienced
stochastic feedbacks and episode changes.

Computational model

In two previous studies (2, 6), we proposed a
computational model describing how the hu-
man prefrontal function guides adaptive be-
havior in uncertain, changing, and open-ended
environments. Collins and Koechlin (2) have
described how the proposed model derives
and approximates optimal adaptive processes
(Dirichlet processesmixture) and, using experi-
mental protocols comprising the present one,
accounts for human adaptive performance bet-
ter than various alternativemodels. Donoso et al.
(6) have provided additional behavioral and
neuroimaging evidence supporting the model
and have revealed the central role of the me-

dial PFC in arbitrating between exploiting the
actor action plan versus exploring alternative
plans. The present study relies on the exact
same model, which is described in the sup-
plementary text.

Model fitting procedures

The model has seven continuous parameters
and one discrete parameter (buffer sizeN com-
prising monitored action plans, see model de-
scription in the supplementary text). To fit the
model to each participant choice behavior, we
used the slice-sampling Markov chain Monte
Carlomethod (37). Accordingly, we drew 7mil-
lion samples from the parameter posterior
(with uniform priors over parameter ranges;
four independent sets of 400,000 samples for
each buffer size ranging from 1 to 6; 50,000
burn-in).We computed themodel log-likelihood
for each participant by summing the log-
likelihoods provided by the model’s epsilon-
softmax function over all trials. To obtain
robust individual parameter estimates, we
computed the log-likelihood weighted average
over all the samples drawn using the buffer
size with maximal posterior probability (table
S2). Finally, we computed trial-by-trial Monte
Carlo estimates of model variables (prior and
posterior reliabilities, choice values, etc.) by

randomly resampling from our full sample
set (70,000 resamples) and computing their
log-likelihood weighted average.

Preprocessing of iEEG data

In the present study, we only report data from
electrode contacts located in the mPFC. We
performed all preprocessing steps usingEEGLAB
(38). First, we removed electrical artifacts from
power lines and medical equipment using
frequency-domain regressions and a thresh-
old based on a Thompson F statistic for ar-
tifact detection (Cleanline, http://chronux.org;
bandwidth 2 Hz, sliding window length of
2- and 1.5-s steps). Then, iEEGdatawere epoched
from −2000 ms before stimulus onset to
+5000 ms after stimulus onset, and detrended
using third degree polynomial fits (overall par-
ticipants performed 2022 trials over two ses-
sions leading to 2022 epochs). Each contact
trace was subsequently re-referenced with re-
spect to its nearest neighbor along the same
electrode (bipolar derivation).We used bipolar
rather than unipolar derivations because it
allows for better signal artifact removal and
achieves high spatial resolution (~3 mm3) by
canceling out contributions of distant sources
which spread equally to recording sites (39).
Epochs with possible epileptic spikes, electrical
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Fig. 7. Functional connectivity analysis from
vmPFC to dmPFC high-gamma activities
in stay trials. (A) The analysis investigated the
physiological correlations between vmPFC high-
gamma activity recorded from −400 ms to
feedback onsets when this activity maximally
encoded chosen values (Fig. 3A, right) and
dmPFC high-gamma activity recorded
from 300 to 600 ms after feedback onsets
when this activity maximally encoded unsigned
RPEs (Fig. 6C). Note that Fig. 3A shows vmPFC
high-gamma activity to still encode chosen
values and actor reliability over this postfeed-
back 300- to 600-ms time window. However, the
analysis was restricted to prefeedback vmPFC
activity to estimate the directional connectivity
from vmPFC to dmPFC. Only the three partic-
ipants with electrodes implanted in both the
vmPFC and dmPFC were included in the analysis
(see fig. S1). Physiological correlations were
computed within every pair comprising one
vmPFC and one dmPFC electrode contact.
(B) Psychophysiological interactions (PPIs)—i.e.,
variations of physiological correlations with the
model variables of interest, namely actor
reliability, chosen value, and (unsigned) RPE.
PPIs were computed for physiological correla-
tions between high-gamma total activities as
well as for correlations between high-gamma residual activities factoring out the influence of model variables on local neural activities. The graph shows that
these physiological correlations increased with chosen values (*P < 0.039), decreased when unsigned RPEs increased (*P < 0.016 and **P < 0.006), and were
unrelated to actor reliability (P < 0.85). Error bars are SEMs across contact pairs. As only the vmPFC encoded chosen values and actor reliability (Fig. 3A), the
results indicate that vmPFC high-gamma activity conveys chosen value rather than actor reliability information to the dmPFC, with this chosen value information
serving to compute RPEs that dmPFC high-gamma activity encoded (Fig. 6C).
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artefacts along with those corresponding to
missed trials and to the first six to nine trials
after breaks were removed. Overall, we ex-
cluded ~5% of epochs.
Time-frequency analyses were carried out

using the FieldTrip toolbox for MATLAB (15).
Spectral powers were estimated using an adapt-
ive multi-tapering time-frequency transform
(40) (Slepian tapers; lower frequency range:
4 to 32 Hz, six cycles, and three tapers per win-
dow; higher frequency range: 32 to 200 Hz,
fixed time windows of 240 ms, 4 to 31 tapers
per window). This approach uses a constant
number of cycles across frequencies <32 Hz
(time window durations decrease when fre-
quencies increase) and above 32 Hz, a fixed
time window with an increasing number of
tapers to obtain more precise power esti-
mates (smoothing adaptively increases with
frequencies).

iEEG data analyses
Model-based analyses of gamma-band
activity

We first computed local activity reflecting neu-
ral spiking by averaging spectral powers (in
decibels) across gamma and high-gamma fre-
quencies at each time point in each trial. For
each contact, we characterized the lower and
upper boundaries of the gamma band on the
full time-frequencymap averaged across trials.
On average, the lower boundwas 41.9 ± 5.6 Hz
(mean ± SEM; minimum, 40 Hz; maximum,
60Hz), and theupperboundwas 140.4±30.8Hz
(mean ± SEM; minimum, 110 Hz; maximum,
200 Hz). Extracting the gamma-band activity
using fixed boundaries (50 to 150 Hz) instead
of contact specific gamma bands changed
neither the pattern nor the overall significance
of the reported results (Fig. 3 and fig. S7).
Second,we regressed across trials the gamma-

band amplitude computed as above against
key parametric variables from themodel.More
specifically, we estimated a general linear
model predicting the trial-to-trial variability
in gamma-band amplitude independently at
each time step (13.8ms) within timewindows
locked on events of interest (from −700 ms to
+700 ms relative to stimulus onsets, from
−700 ms to +1800 ms relative to responses,
from −600 ms to +1200 ms relative to feed-
back onsets). The general linear model included
the following parametric regressors: (i) the
posterior reliability of the actor plan in the
previous trial, its prior and posterior reliability
in the current trial, orthogonalized in that
order so that the current prior and posterior
reliability regressor properly reflects the se-
quences of reliability updates; (ii) the same
regressors for themost reliable alternative plan
in the monitoring buffer; (iii) the RL chosen
valueQt

actorðst ; achosenÞ in the previous and cur-
rent trial, orthogonalized in that order; and (iv)
two potentially confounding factors, namely

choice uncertainty [entropy over current actor
Q values Qt

actorðst ; atÞ] and reaction time. For
model variable regressors, we used the Monte
Carlo trial-by-trial estimates of model variables
described in section model fitting procedure
above. These regressions were carried out sep-
arately for each of contact, then averaged across
contacts and participants to generate group-
level averages. Fig. 3A shows the time courses
of betas associated with the regressors of
interest—i.e., the partial correlation slope
between gamma-band activity and model var-
iables at every time step. Statistical inferences
were performed with a statistical threshold of
P < 0.05 corrected for multiple comparisons
[Bonferroni-Holmes Family-Wise-Error cor-
rections at the cluster level (41); n = 150
permutations within contacts, n = 50,000
permutations between contacts].

Analyses of switch compared with
stay trials

For each contact, we computed the paired dif-
ference in frequency powers at each time step
(from −500 ms to +1500 ms relative to feed-
back onsets) for every frequency (4 to 200 Hz)
between switch trials and the two neighboring
stay trials (from −2 to +2 trials relative to switch
trials). We then computed the corresponding
T values, which we averaged across contacts
and participants (Fig. 4A). Statistical inferences
were performed with a statistical threshold of
P < 0.05 corrected for multiple comparisons
[Bonferroni-Holmes Family-Wise-Error correc-
tions at the cluster level (41); n = 150 permu-
tationswithin contacts,n= 50,000 permutations
between contacts].

Neural activity associated with response
feedbacks

To analyze the vmPFC and dmPFC local field
potentials associated with response feedbacks
(Fig. 5 and Fig. 6), we computed in every trial
the frequency power at each time step (from
−500 ms to +1500 ms relative to feedback
onset) relative to the trial grand average (from
−2 s to +5 s around stimulus onset) and we
averaged across trials. We then computed the
mean across contacts and participants. Statisti-
cal inferences were performed with a statistical
threshold of P < 0.05 corrected for multiple
comparisons [Bonferroni-Holmes Family-Wise-
Error corrections at the cluster level (41); n =
150 permutations within contacts, n = 50,000
permutations between contacts].

Psychophysiological interactions

We performed psychophysiological interac-
tion (PPI) analyses (Fig. 7) in stay trials (42)
between prefeedback high-gamma activities
in the vmPFC (averaged from −400ms to feed-
back onsets), which encoded chosen values
and prior actor reliability (Fig. 3A) and post-
feedback high-gamma activities in the dmPFC

(averaged from +300 ms to +600 ms after
feedback onsets), which encoded unsigned
prediction errors (Fig. 6C). We thus tested
whether in stay trials, the correlation between
these vmPFC and dmPFC activities varied with
each of these three model variables (chosen
values, actor reliability, andunsignedprediction
errors). We performed the three corresponding
PPI analyses across all pairs of vmPFC-dmPFC
contacts in participants with electrodes im-
planted in both the vmPFC and dmPFC (three
participants, fig. S1, for a total of n = 18 con-
tact pairs). For each analysis, we first sorted
the stay trials into 30 bins according to the
model variable of interest. Across the trials
within each bin, we then computed for each
contact pair the correlation between vmPFC
and dmPFC contact activities, namely the
Fisher Z-transformed correlation coefficient.
We then estimated the PPI for every contact
pair by computing the Pearson’s r correlation
between these Fisher Z-transformed correla-
tion coefficients and the model variable of
interest. PPI statistical significances were
assessed by entering the Pearson’s r corre-
lations across contact pairs into one-sample
two-sided t tests. The results are reported in
Fig. 7 (white bars). For completeness, we also
performed the same three analyses from re-
sidual rather than total high-gamma activities,
i.e., after regressing out the joint contribution
of the three model variables to every electrode
contact activity (Fig. 7, gray bars). PPI results
were robust to changes in the number of bins
and in the exact boundaries of time windows
used for extracting high-gamma activities.
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